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1.0 SUMMARY

The overall objective of this program was to develop a
prototype set of fiber optic sensing system components
capable of being demonstrated in a passive (non-
controlling) mode on an engine of a F-18 aircraft during
flight. This design and testing program, and continuing
through the flight testing, will result in helping to validate
fiber optic technology at the component level, providing
engine installation and maintenance experience associated
with fiber optic components, and evaluating their
performance under flight environment.

The measuring of nine sensed parameters on the F404-
400 augmented turbofan engine, three air/gas temperatures,
three actuation geometry positions, two rotor speeds, and
flame presence were chosen for demonstration, using eight
different fiber optic sensing techniques. Technology at the
advanced prototype level was combined with some critical
component development, and packaged for engine
installation. Preliminary and critical design reviews
through the GE Aircraft Engine Chief Engineer’s Office
were conducted. Details of each sensor’s design,
functionality, and environmental testing are described in
this report.

Signal conditioning for the fiber optic sensors was
provided by electro-optics architecture consisting of a set of
circuit boards and a backplane, resulting in MIL-C-1553
data output from an environmentally-tested, engine-
mounted, fuel-cooled chassis assembly, designated the EOU
(electro-optics unit). One intent of the design was to
emphasize multiplexing and commonality among the
various sensing techniques. Fiber optic cables were
designed/fabricated to interconnect the EOU with the
Sensors.

To help evaluate the fiber optic sensing measurement
performance, a set of electrical comparison signals were
used, mostly provided by the existing engine control
system, plus some specially added sensors. A goal was for
the fiber optic sensing measurements to exhibit performance
equal to or better than the electrical sensors under engine
operating conditions. Performance levels achieved are
described in this report.

The fiber optic sensors, cables, and the EOU were
designed to mount onto a F-18 installed F404-400 engine.
NASA Dryden Research Center conducted flight test
experiments and modifications were made to insure several
close clearances between the engine and the airframe were
sufficient. The fiber optic sensing system was also
designed to minimally interfere with the existing engine
control system. GE and NASA flight readiness reviews
were conducted to resolve safety issues. Added component
mounting brackets were tested for engine resonant
frequencies, and some were instrumented during the second
of two engine ground tests at GE Flight Test Operation,
Edwards, CA.

From the development levels achieved in this
program, it is apparent that the temperature capabilities of
optical sources/detectors must be improved in order to
provide adequate measurement performance. Comparison
sensor tests have shown that the proper level of component
interchangeability in most cases is lacking. The epoxies
used as a fastening technique in many optical assemblies
need more temperature design margin. Also, techniques for
integrating some low signal level electro-optic circuitry
with other electronic signal processing circuitry without
introducing unacceptable noise levels are needed. Other
lessons learned are included in this report.



2.0 INTRODUCTION

Advanced aircraft propulsion control systems must
meet increasingly challenging performance requirements
and endure more severe environmental conditions.
Commercial goals include reduction in cost and system
simplification. Military goals are directed toward high
thrust/weight ratios that require higher cycle temperatures to
improve thermodynamic efficiency. Reduced weight is a
universal objective.

NASA and DoD have recognized that the use of fiber
optic technology will provide immunity to EMI
(electromagnetic interference), and higher rates of
communication. Weight savings are expected through
reduced system conductor count, innovative fiber mounting
techniques, and reduced complexity. In addition, fiber
optics techniques have the potential of providing better
system performance and the capability of withstanding
higher environmental temperatures.

Fiber optic components identified for potential use in
an aircraft propulsion control system need to be evaluated
for performance in the required hostile environment.
Components mounted on jet engines must endure severe
temperature extremes and thermal cycling, and the stress of
mechanical vibration, physical shock, and handling abuse,
within an atmosphere contaminated with oils, fuels,

humidity, and EMI.

In 1975, NASA began work to develop fiber optic
sensors for use in aircraft propulsion systems. In 1985-86,
Phase I of a program called FOCSI (Fiber Optic Control
System Integration) was jointly funded by NASA and DoD
(ref. 1). This program identified sensor requirements and
environments, assessed the status of fiber optic sensor and
related component technology, and conceived a total fiber
optic, integrated propulsion/flight control system. In 1988,
FOCSI Phase II evaluated the electro-optic architecture
needed to service the sensors and presented a detailed
design of a preferred system configuration (ref. 2).

The purpose of the program described in this report
was to design, fabricate, and perform bench, environmental,
and engine ground testing of a prototype set of fiber optic
sensing system components (sensors, cables, and electro-
optic circuitry) that have both commercial and military
engine application. The results have made a significant
contribution in demonstrating the technology and
developing a database on its reliability, maintainability,
cost, size, and weight, leading to more fully exploring and
exploiting the technology benefits, and determining the
areas that need more development towards product
application.



3.0 SENSOR SET DESCRIPTION

3.1 IDENTIFICATION AND RANGES 3.2 ENGINE/SYSTEM SCHEMATICS

The following nine F404 engine sensing parameters Figures 1 shows locations of the nine sensors on
and associated measurement ranges were chosen for the F404-400 engine. Figure 2 shows a system schematic.
demonstration of optical sensor techniques:

1. Engine Inlet Air Temperature (T1) -65 to 300°F
2. Compressor Inlet Air Temperature (T2.5) -65 10 535°F
3. Turbine Exhaust Gas Temperature (T5) 700 o 1600°F
4. Fan Variable Geometry (FVG) Actuator Position 2.7 inches stroke
5. Compressor Variable Geometry (CVG) Rotation 56 degrees rotation
6. Variable Exhaust Nozzle (VEN) Actuator Position 6.923 inches stroke
7. Low Pressure Rotor Speed (NL) 2787 o 10683 Hz
8. High Pressure Rotor Speed (NH) 195104425 Hz
9. Afterburner (AB) Flame Detection On/Off
FVG Linear Position Sensor
Litton/WDM Digital Code
] T5 Temperature Sensor
T2.5 Temperature Sensor iati
—— T1 Temperature Sensor Puget Sound Sen abry Conax/Blackbody Radiation
Rosemount/Fluorescent Decay
CVG Rotary Position Sensor AB Flame Detector
BEI/WDM Analog Ratio Ametek/UV Tube
N [/
/ v
ECU
( \
NLS Sensor
NH Speed Sensor _/ Bankmkels Effect Z_ VEN Linear Position Sensor
Allied Signal/Faraday Effect Electro-Optics Unit ~ BEL/WDM Analog Ratio

GE/Litton

Figure 1 - FOCSI Fiber Optic Sensors On the F404-400 Engine
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3.3 F404 IMPLEMENTATION

NASA’'s desire was to demonstrate as full a
complement of fiber optic sensors as possible, with minimal
interference with the F404 engine or its control system. It
was agreed that modifications to the flight critical main fuel
control to measure fuel metering valve position would be
too complex and costly. No special concerns were
associated with implementing FVG, CVG, and VEN
positions sensors, T1 and TS temperature sensors, or NH
speed. However, implementing T2.5 temperature, NL
speed, and AB flame detection were estimated to be more
difficult.

3.3.1 T1 Temperature Sensor

The F404-400 engine control system uses a single
element RTD electrical sensor, de-iced using hot air,
mounted through the engine front frame. It was not
practical to modify the engine frame for the mounting of an
additional sensor. It was estimated to also be costly and
mechanically difficult to modify the present electrical
sensor to add an optical element and substantiate for flight
testing.

Optical T1 Sensor

The option chosen was to modify another qualified
inlet-type sensor housing by replacing the electrical element
with an optical element, and mount the additional sensor
through an additional penetration in the airframe’s engine
intake, as shown in Figure 3. This model uses has electrical
de-icing.

3.3.2 T2.5 Temperature Sensor

The F404-400 engine control system uses a single
transmitter mounted through the engine main frame which
sends a pneumatic signal, representing compressor inlet air
temperature, to the MFC . As with the T1 sensor, it was not
practical to modify the engine frame for an additional
sensor mounting.

After trading off alternatives, it was decided to install
the optical probe through the mounting flange of the F404
pneumatic sensor, clamped in place using a Swagelok
device, as shown in Figure 4. A similar modification had
been accomplished and flown in the past using
thermocouple instrumentation.

Fiber Optic Hardware Is
Mounted On The Left
Aircraft Engine, Aft
Looking Forward

Figure 3 - Optical T1 Temperature Sensor Mounts In The Aircraft’s Engine Intake
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The F404-400 engine control system uses two
identical four-probed thermocouple harnesses mounted
upper and lower on the AB case. A four-probed fiber optic
hamess replaces the lower thermocouple harness, as shown
in Figure 5 The engine control signal is therefore reduced
from an average of eight probes to an average of four
probes. The resulting error is not expected to be significant.

3.3.4 FVG Position Sensor

The F404-400 engine control system uses a single
electrical LVDT position sensor mounted inside the FVG
actuator. A linear optical position sensor was mounted
parallel with and external to the FVG actuator. At this
location the optical sensor would not be subjected to fluid
immersion. Details of this and other sensor installations are
described in Section 8.

3.3.5 CVG Position Sensor

The F404-400 engine control system uses a

Housing of Pneumatic Sensor

~=— AIR FLOW

Figure 4 - Installation of Optical T2.5 Temperature

Probe Through F404-400 CIT Transmitter
Flange

mechanical link as feedback between the CVG actuator and
the MFC. A rotary optical position sensor was mounted to
pick off motion of the CVG bellcrank pivot stud.

3.3.6 VEN Position Sensor

The F404-400 engine control system uses a single
electrical LVDT position sensor, mounted in a separate
housing, in parallel with the VEN actuators. Hydraulic
fluid is circulated through the housing for cooling. A linear
optical position sensor was mounted parallel with and
external to the VEN LVDT and actuators. The optical
sensor is not cooled.

3.3.7 NL Speed Sensor

The F404-400 engine control system uses two
electrical eddy current speed transmitters mounted on the
fan frame to count the titanium fan blade tips. Having both
electrical sensors in operation is important for flight safety.
By inserting an electrical Y cable, the signal from one
electrical speed sensor was branched as input to the optical
sensor, as shown in Figure 6.



Electrical

Pro
\ Short

EOU

ECU

Figure 5 - Aft Looking Forward View Of Electrical and Optical TS Temperature
Probes On F404-400 Engine For FOCSI

Electrical

NL Sensor
| /— W4 Green Electrical Cable

F404-400 -
Configuration g ) > ToECU
— Orange Electrical
Y Jumper Cable
— ] W4 Green Electrical Cable
/— » To ECU
FOCSI )
Configuration

Fiber Optic

NL Sensor

% / To Electro-Optics
Fiber Optic Cable

Figure 6 - Fiber Optic NL Speed Sensor Interface With F404-400 NL Speed Sensor



3.3.8 NH Speed Sensor

The F404-400 engine control system includes a
gearbox-mounted electrical alternator which provides a NH
speed signal by using a separate winding output. The
optical speed sensor probe is mounted onto and through a
modified alternator stator and is modulated by the magnetic
poles of the altemator rotor.

3.3.9 AB Flame Sensor

The F404-400 engine control system uses a single
electrical AB flame detector mounted on the AB casing. It
was not practical to modify the engine casing and inner
liner for an additional sensor mounting, It was decided to
insert a spacer between the electrical flame detector and the
casing to facilitate tapping off the flame’s UV light through
a fiber optic bundle, as shown in Figure 7.

3.4 OPTICAL/ELECTRICAL SIGNAL
COMPARISON

Provisions were made to compare data from the set of
fiber optic sensors with data from the electrical sensors data
associated with the F404-400 control system All nine fiber

F404-400 Electrical
Flame Sensor

F404-400

Fiber Optic Flame
Sensor Spacer

optic sensor signals are included on the EOU’s MIL-STD-
1553 data bus output. The comparison sensor data is
obtained in the following way:

Five F404-400 electrical sensor signals, Tl
temperature, TS temperature, NL_speed, NH speed, and
YEN position, are input to the ECU, then sent off engine for
monitoring. During an engine ground test they are
continuously monitored. During flight testing, they are part
of an aircraft instrumentation interface, monitored in the
cockpit, and can be obtained for recording.

Two F404-400 electrical sensor signals, FVG position
and AB flame, are input to the ECU and, for this program,
are obtained through the ECU 1est connector and sent to the
EOU and included on the MIL-STD-1553 data bus output.

The other two signals, CVG _position and T2.5
temperature, have no electrical counterpart in the F404-400
control system. To provide comparison, an electrical
potentiometer is included in the CVG fiber optic sensor
package. Likewise, a Chromel/Alumel thermocouple is
included in the T2.5 fiber optic probe package. Both optical
and electrical sensor signals are input to the EQU,
processed, and included on the MIL-STD-1553 data bus
output.

Fiber Optic
i Bundle Cable

FOCSI

Figure 7 - AB Flame Sensor Configurations



4.0 SENSOR DESIGN, FUNCTIONALITY, & TESTING

Preliminary and critical design reviews were
conducted through the GE Aircraft Engines Chief
Engineer’s Office to examine the intended design
implementation, the specified design requirements, and the
resulting design details of each sensing component for
compliance with acceptable design practices and
procedures. Issues commonly requiring corrective action
included those associated with materials, fastening
techniques, stress concentration, sealing against
contamination, installation clearances, operation in the
engine’s temperature and vibration environment, and
interference with the present F404 control system.

4.1 T1 TEMPERATURE SENSOR (ref. 3)

4.1.1 Design

This sensor is identified as Rosemount Aerospace
Model 701J1. It was constructed by modifying an already

qualified inlet total temperature sensor, Model 154DR3,
which has immersion depth and other characteristics similar

“% l
%
\ H 2.96
1.450 MAX I*
} :
L T}
i
2

F404-400

to the F404-400 electrical T1 temperature sensor. The
sensor housing was basically used intact in order to
maintain its design integrity. The electrical connector was
replaced with a MIL-C-38999 Series III connector and ITT
Cannon fiber optic pin contacts per MIL-T-29504. The
sensor uses step index, fused silica fiber with a 200 micron
core and a NA of 0.22. An electrical de-icing heater
element is included. Figure 8 shows the physical outside
features.

The electrical RTD sensing element was replaced with
an optical TRD sensing element, capable of sensing
temperatures over the range from -65°F to 450°F. Several
design modifications were accomplished in the way the new
element is supported in the housing.

4.1.2 Functionality

The TRD technique is based on measuring the
fluorescent decay time of a material following excitation
from an optical source. Light from a transient source
(pulsed or sinusoidal) is transmitted through a single optical

-
3.20 MAX 0
2.0 MAX
)
& ] -
=3 = T
0.18

2.35 Max -

—=i1.63 MAX re—

FOCSI

Figure 8 - T1 Temperature Sensor Housing Configurations



fiber to the sensing element, which consists of a fluorescent
material attached to the end of the fiber. A dopant ion in
the fluorescent material is excited to a higher energy state
by absorption of the source signal and correspondingly
emits a fluorescent signal, at a different wavelength, into the
same fiber. With proper material selection, the fluorescent
signal can be modeled as an exponential decay with a decay
time that exhibits a temperature dependence. A signal
conditioning circuit relates the exponential time constant to
a lemperature measurement.

TRD temperature measurement is based on intrinsic
properties of the fluorescent material. Unlike some other
optical temperature sensing techniques, high tolerances and
precise alignments are not required in the sensor assembly.
Also, being a time based encoding scheme, it is
theoretically immune to variable system losses.

4.1.3 Testing

Each of the three fabricated sensors were acceptance
tested by Rosemount Aerospace. One of the three sensors
was subjected to and passed environmental testing per the
requirements associated with the F404-400 T1 temperature
sensor. The exception to this was vibration. The housing
alone completed vibration testing per F404 requirements.
The entire assembly completed vibration testing per the F18
engine intake (where the FOCSI sensor is mounted)
requirements, because Rosemount Aerospace was relatively
certain that the optical element was not capable of passing
engine requirements at this time. Testing description is
listed below.

* 100 thermal cycles, -65° to 300°F

» Temperature shock, -65° to 300°F

* Vibration , 5 to 50 Hz, resonance
dwells/endurance sweeps and random (per F18)

s Vibration, 20 g’s, 100 to 2000 Hz, 50 g’s to
4000 Hz, 160 g’s to 10 KHz, resonance
dwells/endurance sweeps at upper temperature,
total of 36 hours (housing only).

= Physical shock, 20 g’s, 3 axes

» Humidity, 10 days, 95%, 70° to 160°F

A test cable constructed using ICORE conduit was
used in the vibration test to simulate aircraft installation.
However, it was also used during the thermal cycling. On
the 65th thermal cycle, a low signal level failure occurred.
The problem was traced to degradation of the epoxy used
with the socket contact in the cable connector. See Section
11, Discussion of Results, for details.

10

Rosemount Aerospace also completed wind tunnel
testing, including temperature recovery error, thermal time
response, and de-icing heater error. The data was used to
compare a housing containing an optical element with a
housing containing an electrical element.

4.2 T2.5 TEMPERATURE SENSOR (ref. 4)
4.2.1 Probe Design

The probe is designed to install into the modified
flange of a F404-400 pneumatic sensor and provide both
optical and electrical (comparison) measurements. The
optical sensor consists of a MetriCor standard sensor chip
(0.4 inch x 0.031 inch diameter package) mounted on the
fiber tip of Brand-Rex OC-1250 fiber optic cable (100/140,
step index, 0.22NA fiber). The electrical sensor consists of
24 gage, Kapton coated, type K thermocouple wire with a
welded junction. These two sensing elements were installed
into a drilled aluminum alignment plug, and packaged with
magnesium oxide powder into a 300 series stainless steel
tubing housing by Puget Sound Sensors. The opposite-end
threaded interface is designed to mate for sealing with
ICORE conduit. The completed probe package is shown in

Figure 9.

The probes were supplied to GE with optical fiber and
thermocouple wire pigtails. These were packaged into the
cable assembly by GE, which is described in Section 7.0,
Cable Design & Fabrication.

4.2.2 Functionality

The fiber optic sensing element is a Fabry Perot
interferometer. Internal reflections within an optically
resonant cavity result in wavelength dependent reflectivity.
The sensing cavity refractive index and length both increase
with increasing temperature. This results in a temperature
dependent reflection spectra for the sensor which modulates
the spectrum of the excitation light source. The returned
spectrum can be analyzed and the temperature of the sensor
cavity determined.

4.2.3 Testing

Each of the three fabricated probes were tested and
calibrated to 572°F. One of the three probes was subjected
to and passed the following thermal testing based on the
F404-400 CIT transmitter specification:



-0.125 0D x 0.01S Wall SS Tube

-0.187 OD x 0.03 Wall SS Tube

‘Cap

le— 0.750

1 2.700+ Bt
Thermocouple Junction
Fiber Optic Cable-7
Thermocouple Wire
.. ';;
2,
Snap Ring
O Powder
Mgo Po -Alignment Plug
- Fiber Optic Sensing Element
1/2-20 Thread =~ f=— 061

Figure 9 - T2.5 Temperature Probe Package

« 50 thermal cycles, -65° to 535°F (probe tip)
« 50 hour temperature soak, 535°F (probe tip)
« 50 hour temperature soak, 350°F (cable)

As a result of the 50 hour cable soak at 350°F, it was
found that the calibration had shifted on the average of 15 to
20°F. This was found to be related to irreversible shrinkage
and stickiness of the inner fluoropolymer tubing of the
Brand-Rex OC-1250 fiber optic cable. The shrinkage
. apparently placed the fiber under a constrained shape, made
worse by the stickiness, which causes microbend losses and
changes in the mode distribution transmitted through the
fiber. See Section 11, Discussion of Resuits, for more
details.

A probe was also subjected to vibration testing at GE
in a fixture to simulate its engine mounting configuration.
This consisted of a resonance survey and 6 hours of sweep
cycling from 10 to 2000 Hz, at levels up to 3.2 g’s,
according to F404-400 vibration levels. The major first flex
resonance was found to be above the maximum value of
concern for engine operation.

43 T5 TEMPERATURE SENSOR (ref. 5)
43.1 Design

The design consists of an assembly of four probes
(two long and two short) and an optical cable harness. Each
probe assembly consists of a sensing element fabricated
from a sapphire rod, a ceramic tube for support at the end
exposed to combustion gases, and a metal housing with
cooling passages over the remaining length, Each probe
assembly is joined to the optical cable with a split flange
that allows access to the optical components but is not
intended to be disassembled in the field. A physical outline
of the assembly is shown in Figure 10.

A single 2007220 micron optical fiber, with polyimide
buffer and additional jacketing, carries the light from each
probe to a special connector. The entire harness uses
flexible metal outer conduit.

The probes are designed mechanically to perform in
the F404-400 thermal, vibration, and gas flow environment,

11
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but are actually designed to measure temperatures to
2500°F, demonstrating capability beyond the F404
requirements.

4.3.2 Functionality

The sensing principle for this sensor is blackbody
radiation. A source material embedded at the end of the
sapphire light guide emits radiation varying as a function of
temperature. The four probe signals are projected onto a
common detector assembly thereby integrating the optical
intensity to produce an “optically averaged” signal.

From 700° F to 1100° F, the measurement is based
only on the output from a germanium detector in the
spectral band from 1000 to 1800 nm. From 1100° F to
2500° F, the measurement is based on the ratio of the output
of a germanium detector with the output from a silicon
detector in the spectral band from 400 to 1000 nm. In the
upper range, being a ratio mode, the measurement is more
accurate than in the lower range.

12

4.3.3 Testing

Three probe/hamess assemblies were fabricated by
Conax Buffalo. One of the three assemblies was subjected
10 and passed environmental testing per requirements based
on the F404-400 exhaust gas temperature probe/harness
assembly. Testing consisted of the following:

* 25 thermal cycles , 200° to 1600° F (probe), -65° to
490° F (hamess)

* 24 hour temperature soak, 1500° F (probe), 490° F
(hamess)

« Vibration, 10 to 2000 Hz, 20 g’s, resonance
dwells/endurance sweeps

» Humidity, 5 days, 95%, 70° to 167° F.

* 25 hours of simulated aerodynamic loading at
1600°F on the ceramic support tube of the long probe.

4.4 FVG POSITION SENSOR

4.4.1 Design



This sensor is identified as Litton Model FO3575-1. Tt
is a linear position transducer with a + 1.35 inch optical
stroke and 0.25 inches mechanical over-travel at each end.
The rod end turnbuckle has + 0.050 inches of adjustment.
Each sensor uses two 100/140, step index, 0.22 NA optical
fibers for excitation and return light. Its optical signal
interface is a MIL-C-38999 Series III connector using
Ampbhenol fiber optic pin contacts per MIL-T-29504. Its
mechanical interface for engine mounting is a
flanged/siotted clamp around the circular (1.00 inch
diameter) outer body. Figure 11 is an outline drawing.

4.4.2 Functionality

This sensor uses digital wavelength division
multiplexing. The sensor shaft is a 12 bit-encoded linearly
moving scale. The sensor is excited by a 750 to 900 nm
source spectrum through the input fiber. After passing
through a coupler, a grin lens, prism, and grating are used to
spread the light across the code plate. Reflected light is
collected and sent though the output fiber to the electro-
optics circuitry for decoding.

2 i : \E
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4.4.3 Testing

Three sensors were fabricated by Litton Poly-
Scientific. One of the three was subjected to and passed
environmental testing per requirements based on the F404-
400 FVG servo-actuator design specification and vibration
data. Testing consisted of the following:

« 25 thermal cycles, -65° to 300° F.

« 24 hour temperature soak, 300° F

+ Vibration, 10 to 2000 Hz, up to 3.2 g’s, resonance
dwells/endurance sweeps, total of 18 hours.

« Physical shock, 20 g’s, 3 axes

» Humidity, 5 days, 95%,70° to 130° F

« 50 hours of rod extend/retract endurance, 10
cycles/minute

After the testing, it was determined that a significant
shift in the position of the sensor in its body clamp would
be required for rigging on the engine, invalidating the
resonance testing at Litton. However, frequency (ping)
testing by GE FTO, Edwards, following the first engine
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Figure 11 - Outline Drawing of FVG Position Sensor
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ground test, showed that as mounted/rigged on the engine,
there were no severe resonances in the engine operating
range. During the second engine ground test, the sensor
was monitored for vibration. See Section 10.2, Second
Engine Test, for the results.

4.5 CVG POSITION SENSOR (ref. 6)
4.5.1 Design

This sensor is identified as BEI Model 90023. Itis a
rotary position transducer with 56 degrees of calibrated
shaft rotation, but capable of 360 degrees of mechanical
shaft rotation. The housing contains both an optical sensing
device and an electrical potentiometer to provide a
comparison signal. Figure 12 is an outline drawing. Each
sensor uses two 100/140, step index, 0.22 NA optical fibers
for excitation and return light. Its signal interface is a MIL-
C-38999 Series III connector using Amphenol fiber optic
pin contacts per MIL-T-29504.
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4.5.2 Functionality

This sensor uses an analog wavelength ratiometric
technique. The sensor is excited by light through the input
fiber centered over the wavelengths of 780 nm and 880 nm.
In the sensor, a coupler splits the light into two equal
intensity branches. The light in each branch is collimated,
directed through a code plate, and respectively filtered. One
path is through a variable transmittance track on the code
plate, the other is through a constant transmittance track.
The outputs are coupled into the output fiber. The light is
split and filtered again in the electro-optics circuitry and the
780/880 nm intensity ratio is a measure of rotary position.

4.5.3 Testing

Three sensors were fabricated by BEI Motion
Systems. One of the three was subjected to and passed (see
comment on vibration below) environmental testing based
on the F404-400 FVG servo-actuator design specification

o
o
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Figure 12 - Outline Drawing of CVG Position Sensor
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and vibration data. Testing consisted of the following:

« 25 thermal cycles, -65° to 350° F.

» 24 hour temperature soak, 350° F

= Vibration , 10 to 2000 Hz, up to 3.2 g's, resonance
dwells/endurance sweeps, total of 22 hours.

» Physical shock, 20 g’s, 3 axes

Humidity, 5 days, 95%,70° to 130° F

50 hours of + 60 degree shaft cyclic endurance, 10

cycles/minute

During the vibration testing, no sensor failure
occurred. However, the flexible shaft coupling failed twice.
BEI included an additional bracket to the engine mounting
simulated setup for stiffening and stability. This invalidated
the resonance testing because it no longer represented the
engine configuration. However, bracket modifications
were made for engine mounting and frequency (ping)
testing was performed as mounted on the engine. The
results are described in Section 8.1, Sensor Installations.

MIiL—C—38999 SERIES i
BENDIX Pj

N JD38999/26FB2SA

4.6 VEN POSITION SENSOR (ref. 6)
4.6.1 Design

This sensor is identified as BEI Model 90027. Itis a
linear position transducer with a + 3.50 inch optical stroke
and mechanical overstroke. Figure 13 is an outline
drawing. Like the FVG and CVG sensors, each sensor uses
two 100/140, step index, 0.22 NA optical fibers for
excitation and return light. Its signal interface is a MIL-C-
38999 Series III connector using Amphenol fiber optic pin
contacts per MIL-T-29504, at the end of a 90 inch fiber
optic harness pigtail .

4.6.2 Functionality
This sensor uses an analog wavelength ratiometric

technique, identical to that used by the CVG sensor except
linear stroke rather than rotary.
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Figure 13 - Outline Drawing of VEN Position Sensor
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To EO Unit

4.6.3 Testing

Three sensors were fabricated by BEI Motion
Systems. One of the three was subjected to and passed (see
comment on vibration below) environmental testing based
on the F404-400 electrical VEN position transducer design
specification and vibration data. Testing consisted of the
following:

+ 25 thermal cycles, -65° to 350° F, and periodically
to 500° F at the sensor rod end

* 24 hour temperature soak, 350° F

* Vibration , 10 to 2000 Hz, up to 3.2 g’s, resonance
dwells/endurance sweeps, total of 25 hours.

"« Physical shock, 20 g’s, 3 axes

+ Humidity, 5 days, 95%,70° to 130° F

» 50 hours of extend/retract cyclic endurance, 12
cycles/minute

During the vibration testing, no sensor failure
occurred. However, the main bracket intended for engine
mounting was braced in such a way to prevent excessive
displacement which invalidated the resonance testing
because it no longer represented the engine configuration.
However, the brackets actually used for actual engine

mounting were significantly different anyway. Frequency
(ping) testing was performed as mounted on the engine as
described in Section 8.1, Sensor Installations.

4.7 NL SPEED SENSOR
4.7.1 Design

The sensor modulator assembly is encapsulated within
a nickel-plated aluminum housing, as shown in Figure 14.
At one end of the assembly, the single input/output fiber
pigtail (Brand-Rex OC-1260 cable, 100/140 graded index
fiber, 0.29 NA) is aligned with the polarizer/lens/crystal
clements. The housing includes threads compatible with the
coupling nut on an 8 inch long branch of ICORE conduit.
The other end of the branch is terminated with a MIL-C-
38999 connector used with an Amphenol fiber optic pin
contact per MIL-T-29504.

At the other end of the assembly is a shielded
electrical pigtail/fendcap assembly, fabricated by GE at
Ft.Wayne, IN The pigtail connector is chosen to mate with
the orange electrical Y cable from a F404-400 electrical NL
sensor, as shown in Figure 6. The wires feed through the
sensor endcap and are soldered to the primary wires of a 5:1

gel/potting

100/140
Brand-Rex

10 to 1 Step Up
Transformer

End Cap
From F404

Fan Speed
Sensor

—

4

(810 nm)

1.12 DIA
Mcdulator

Assembly: fiber alignment
columating lens
polarizer

Shielded
Electrical
Cable

Primary Terminal
Secondary Terminal

0-Rings

optical crystal (.012 X .025 X 1.0 inches)

mirror

electrodes

v Figure 14 - NL Speed Sensor Assembly -
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step-up impedance matching transformer (Harder Co. Inc.,
Part No. 10-0887) used 1o boost the signal. The transformer
secondary wires are silver epoxied to the crystal.

The crystal is suspended in RTV inside the modulator
assembly (0.145 inches diameter X 1.49 inches long). The
modulator assembly, in turn, is potted into the housing for
resistance to humidity and vibration.

4.7.2 Functionality (ref. 7)

The sensing element is an electro-optic (Pockels
effect) modulator or shutter. The input light (810 nm) is
collimated, polarized, and passed through the modulator
material, which rotates the beam polarization in response to
the varying voltage signal, imposed on the modulator
through electrodes. A mirror at the end of the modulator
reflects the light back through the system and it is refocused
into the fiber. Estimated optical insertion loss is 34 dB with
modulation depths as low as 0.06 dB.

Input voltages from the F404-400 NL sensor to the
transformer are estimated to vary from 2 volts peak-to-peak
at 2.8 KHz (one/fan blade frequency at 30% engine speed)
to 6 volts peak-to-peak at 10.7 KHz (one/fan blade
frequency at 115% engine speed). The EO modulator is
functional with inputs as low as 0.3 volts and up to 40 volts.
Since the fan rotor contains 42 blades, the pulse frequency
in Hertz from the optical NL sensor is 0.7 X engine fan
rotor speed in RPM.

4.73 Testing

One of the three sensor assemblies fabricated by
Banks Engineering & Labs was subjected to and passed
environmental testing based on the F404-400 electrical NL
speed sensor design specification. Testing included the
following:

+ 24 hour temperature soak, 350° F

« 25 thermal cycles, -65° to 350°F

+ Vibration , 10 to 2000 Hz, up to 60 g’s, resonance
dwells/endurance sweeps, total of approximately 11
hours.

« Physical shock, 20 g's, 3 axes

The vibration testing revealed a small assumed piezo-

optic signal effect. Provisions were made to filter out these
frequencies using the signal conditioning electronics.

4.8 NH SPEED SENSOR (ref. 8)

4.8.1 Design

The sensor is identified as Allied Signal Model No.
FXC-311079. Each sensor uses two 100/140, step index,
0.22 NA fibers for excitation and return light. Its signal
interface is a housing mounted MIL-C-38999 Series III
connector using Amphenol fiber optic pin contacts per
MIL-T-29504. The design is temperature limited to 425° F
by the active material.

Three o-ring grooves on the mounting face provide
sealing around the probe and two bolts entering the
alternator stator. A dimensional stackup was done to size
the probe length so that there is no chance of interference
with the alternator rotor, without the use of shims. The gap
will fall between 0.020 mils and 0.090 mils. It will be
measured at each installation. Since the mounting bolts
install from inside the altemnator stator, the sensor body
threaded inserts were carefully reviewed for strength and
retention. Figure 15 is an outline drawing of the sensor.

4.8.2 Functionality

This is categorized as a Magneto-Optic or Faraday
effect sensor. The input light (730 nm) is passed through a
linear polarizer, a magneto-optic crystal, and a cross-
polarizer. As the magnetic field in the alternator fluctuates,
the intensity of the transmitted light is modulated in
intensity since the magneto-optic crystal rotates the
polarization of the light. The design for this probe lets
minimum light through in the unexcited state. The amount
of light modulation decreases as temperature increases, but
is unaffected by rotor speed. Average measured optical
insertion loss is 28 dB, with average modulation depth of 10
dB.

The alternator rotor has 9 magnetic poles. The engine
gearbox to engine core speed ratio is 1.59091. Therefore
the pulse frequency in Hertz from the NH speed sensor is
0.239 X engine core speed in RPM,

4.8.3 Testing

One of the three sensor assemblies fabricated by
Allied Signal was subjected to and passed environmental
testing based on the F404-400 electrical alternator design
specification. Testing included the following:

+ 8 hour temperature soaks, -65° F and 350° F

s 50 thermal cycles, -65° to 350° F

+ Vibration , 10 to 2000 Hz, up to 20 g’s, resonance
dwells/endurance sweeps, total of 13 hours, on an

17
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49 AB FLAME DETECTOR
4.9.1 Design

The detector assembly components include the
following: (1) A stainless steel spacer, installs under the
F404-400 electrical flame detector. The original height of
0.74 inches was reduced to 0.50 inches for flight testing. It
has three possible places where the fiber optic cable can be
installed to view the flame. (2) A 59 inch long, 0.375 inch
OD, fiber optic bundle cable, containing approximately 100,
200/220, step index, aluminum-coated fibers. (3) A UV
detector circuit board. These are shown in Figure 16. This
configuration allows the F404 detector to continue to
function simultaneously. In a product design, only a small
casing pad would be required for the end of the cable.

MIL-R-B83248/1~18

10-32 UNF THREAD LDOCKING
ROSAN .29 MAX THREAD DEPTH,

Figure 15 - Outline Drawing of NH Speed Sensor

4.9.2 Functionality

UV radiance emitted by the AB flame is collected into
the fiber bundle and transmitted to the UV detector in the
EOU. The operating spectrum is 200 to 270 nm.

4.9.3 Testing

One of the three spacer/cable assemblies fabricated by
Ametek Aerospace Products was subjected to and passed
environmental testing per appropriate F404-400 component
requirements. Testing included the following:

* 24 hour temperature soak, 450° F

+ 25 thermal cycles from -67° to 450°F.,

* Vibration , 10 to 2000 Hz, up to 20 g’s, resonance
dwells/endurance sweeps.

+ Physical shock, 20 g’s, 3 axes

Humidity, 5 days, 95%, 70° t0 167° F

GROCVE FOR O RING

GROOVE FOR 0 RING



UV Detector Circuit Board
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5.0 ELECTRO-OPTIC CIRCUITRY

As with the sensing components, preliminary and
critical design reviews were conducted through the GE
Aircraft Engines Chief Engineer’s Office to examine the
electro-optic circuitry for compliance with acceptable
practices and procedures. Issues of discussion focused
more on, for example, the thermal environment, installation
in the EOQU chassis, circuitry packaging, and strain relief
than on the specific circuit design itself, because of its often

proprietary nature.

5.1 LITTON EOA CIRCUITRY (ref. 9)

Litton fabricated three sets of EO circuitry to service
seven (7) of the nine (9) fiber optic sensors (excluding TS
temperature and AB flame). Litton also provided the EQU
processor, providing MIL-STD-1553 data output for all
nine (9) fiber optic sensors, four (4) electrical comparison
sensors, and two (2) internal EOU temperature sensors.

The circuitry consists of eight (8) SEM-E board
assemblies and a backplane. The EOA design is largely
based on prior WDM sensor interface and data processing
designs generated for the McDonnell Douglas FOCSI
Program. Each SEM-E board is typically 4 to 10 layers and
requires a SEM-E aluminum frame machined such that
there is a hole for each component lead. Each board
includes high and low frequency decoupling (10 uF and 0.1
uF capacitors) at each board edge and throughout the board
around cntical components.

5.1.1 WDM Source Board

This board contains two broadband ABB Hafo 1A279
LED’s and two 770 nm Texas Opto TOX3616-2 LED’s to
provide a broadband spectrum of 750 to 900 nm to four
output channels (FVG, CVG, and VEN position sensors and
the T2.5 temperature sensor) that exit via ports on the
backplane. One additional channel is fed through an
attenuator to the receiver board to provide feedback for fault
management and a reference spectrum for WDM analog
sensor decoding. The LED duty cycle is varied between
30% and 90% by pulsing a modulator pin, changing the
spectral power without affecting the spectral shape. A §X5
star coupler uniformly mixes the signals into five 100um
core output fibers.

5.1.2 WDM Receiver Boards

An optics board and an electrical board comprise the
receiver board assembly. The assembly includes the
electro-optic interface which converts WDM-based optical
sensor outputs into a steam of data which can be processed
by digital circuits. It also accepts up to seven additional
electrical inputs for processing.

* Optics Receiver Board

The optics receiver board receives return light from
the four sensors described below. A WDM coupler focuses
each optical signal as a separate row of a two-dimensional
CCD array. The pixels in each row divide the spectrum
such that there are 1.5 pixels per nanometer of wavelength.
One input is routed through an attenuator before it reaches
the WDM coupler so that the reference spectrum can be
attenuated to a level within the receiver dynamic range.

- For the FVG position sensor, the spectral response is
a series of discrete peaks or absence of peaks
representing a position on the code plate.

- For the CVG/VEN position sensors, the response is
two spectral regions (variable/reference), the energies
of which are ratioed to calculate code plate position.

- For the T2.5 temperature sensor, the energy in two
regions of the spectral response are used in a
difference over sum calculation, and the result is
related to temperature through a lookup table.

The CCD is a 192 X 165 pixel array manufactured by
Texas Instruments (#TC211). The active area is 2640 pum?
with each pixel measuring 16 um by 13.75 um. There are
no inactive optical zones between the pixels, making this
array ideal for high resolution sensing. The array is housed
in a ceramic package measuring 0.308 X 0.281 inches.

The output of the CCD array is filtered and level
conditioned to match the input requirements of the A/D
converter. The A/D converter is a high-speed, 10-bit flash
converter capable of digitizing all pixels in the high-speed
video stream.

« Electrical Receiver Board

The electrical receiver board converts the four CCD
array sensor outputs into unsorted digital data. It also
receives analog data from six other sensors. Electrical T2.5



temperature, FVG/CVG position, and flame detector
comparison signals, and two internal EOU RTD
temperature signals in a 0 to 1.25V analog form are
received from the GE A2 module and converted into digital
data. An 8X1 analog multiplexer was added to switch
between these electrical inputs and the CCD array output so
that the one A/D converter could be shared eight ways.

5.1.3 Speed Sensor Boards

There is a separate EO board for both the NL and the
NH speed sensors. Each board contains separate LED
source/detector/zero-crossing/counting circuitry and
presents a digital representation of speed to the DAC board.
The LED is kept at a constant bias level for DC operation.
The received sine waves are filtered to remove any out-of-
band noise, and sent through a comparator to generate
square wave TTL signals. The NL board includes a 50/50
coupler to couple transmitted power and the received power
into one fiber.

5.1.4 TRD Sensor Board

This board converts the optical output from the TRD
sensor into a digital signal that can be read by the 1750
processor and converted to a temperature measurement
using a calibration curve. Light at 660 nm is modulated
with a 1 KHz sine wave and transmitted through a dichroic
coupler into a 200um core fiber. The sensor fluoresces at
800 nm and returns a signal through the same fiber and
dichroic to the photodiode. The phase difference between
the transmitted and received signals is used as the data
measurement. The phase difference is averaged over eight
samples and the result is output to the processor.

Several factors limit the accuracy of the phase
technique. When making a time delay measurement, it is
highly desirable that both signals have the same amplitude,
allowing accurate zero-crossing measurement. As the
amplitude differential increases, so does measurement error.
The return amplitude from the sensor is sensitive to
connector loss and conversion efficiency of the sensor. As
a result, the time delay measurement is dependent on the
system loss budget.

Word

Number Description
1 Engine Inlet Temperature (T1)
2 Compressor Inlet Temperature (T2.5)
3 Compressor Inlet Temperature (T2.5)
4 Exhaust Gas Temperature (T5)

The TRD board passes both the reference and
measured signals through identical 1 KHz active bandpass
filters, having a characteristic phase delay through the
passband that varies with frequency. The phase delay of the
filters adds to the time delay of the sensor and reference
signals. Therefore, the differential delay between the filters
must be subtracted from the measured delay time for an
accurate measurement, Component variations prevent the
bandpass filters from being identical resulting in a non-zero
differental delay.

Rather than try to measure the differential delay
between the filters, the TRD card was calibrated as a unit.
The bandpass filters were adjusted for maximum signal
response and the delay versus temperature characteristic
was measured using a sensor. The result is a calibration
model for each TRD board which consists of a third-order
polynomial curve fit, residing in the 1750 software.

8.1.5 DAC and Processor Boards
*» DAC Board

The data acquisition (DAC) board acts as an elastic
buffer between the data from the WDM electrical receiver,
speed sensor, and TRD boards, and from the Conax (TS)
and Ametek (AB flame) signal processing circuitry and the
processor board. It scans all WDM sensor pixels every 10
milliseconds. A state machine uses the clock and
row/column information from the receiver to determine
which pixels are present at the receiver A/D converter. If
the pixel address is one which is required for decoding a
particular sensor, the state machine will clock the value of
that pixel into the memory. The DAC board also provides
power level control to the source board.

« Processor Board

The processor board is a standard SEM-E module that
was designed by the Naval Avionics Center. It features a
PACE MIL-STD-1750 processor running at 16 MHz, one
parallel port interface, and a dual 1553 transceiver. The 14
1553 output words are described as follows:

Optical/

Electrical Range/Units
Optical -54°10 149°C
Optical -65° t0 540° F
Electrical 010125 VDC
Optical 700° to 2500° F
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5 Internal EOU Temperature (T-CCD) Electrical 010 1.25VDC
6 Internal EOU Temperature (T-Chassis) Electrical 0t01.25VDC
7 Compressor Variable Geometry (CVG) Position Optical -3.5 t0 52.5 degrees
8 Compressor Variable Geometry (CVG) Position Electrical 010 1.25VDC
9 Fan Variable Geometry (FVG) Position Optical 010 2.7 inches
10 Fan Variable Geometry (FVG) Position Electrical 0t0 1.25 VvDC
11 Variable Exhaust Nozzle (VEN) Position Optical 0to0 6.923 inches
12 Low Pressure Rotor Speed (NL) Optical 2787 10 10683 Hz
13 High Pressure Rotor Speed (NH) Optical 195 t0 4425 Hz
14 AB Flame Both “0"or “1”
5.1.6 Backplane - SEM-E connectors quantity 5, each with 10 fiber optic
cavities (supporting one side of the G&H termini),
The EOU backplane is a 10 layer board that routes and supplied by NAWC from ITRON Corp., Westmont, [L.
supports optical and electrical pathways to, from, and (see Figure 18).
between the eight Litton boards. Each backplane includes - Machined inserts, quantity 5 (supporting the other side
the following features: of the G&H termini), also supplied by NAWC,
- Separate solid power planes for each power supply
voltage to insure a low impedance connection to each 5.1.7 Sensor Decoding
board.
Expanded-beam lensed fiber optic terminus Each optical sensor requires a different algorithm for
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assemblies, for 100/140 fiber, quantity 13, supplied by decoding. In addition, the software has to allow for
the Naval Air Warfare Center NAWC), Indianapolis, assembly tolerances in the optical DEMUX and the sensors.
IN, from G&H Technology, Inc., Santa Monica CA There was a tradeoff between signal processing ability and
(see Figure 17). Note, these were not used with the the EOU update rate. The total processing time allowed for
2007240 TRD sensor fiber. decoding all the sensors and performing fault
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management must fit within the update rate of the EOU,
less the time required to read all pertinent CCD array pixel
values. An update rate of 10 ms limited the use of
complicated signal processing algorithms.

In general, there are two types of sensors connected
to the CCD array: analog and digital. The analog sensors
consist of two bands of optical power where one stays
constant and the other varies as a function of the sensed
value. Since the source spectrum is not completely flat, it
has 1o be subtracted from the received spectrum. This is
done by dividing by the feedback channel pixels before any
algorithm is applied. The digital sensor requires that the
wavelength position of certain peaks be found within the
received spectrum

5.1.8 System Optical Power Budget Design

There are four optical systems within the Litton EOA

circuitry: the TRD board and sensor, the NL board and
sensor, the NH board and sensor, and the source and
receiver boards and their four associated sensors. The
insertion losses and dynamic ranges of all sensors had to be
compatible with the EOA sensitivity and dynamic range.

5.2 GE CIRCUITRY
§.2.1 Power Supply Modules

GE modules designated A1A and AlB contain the
EOU power supply. Each module contains two printed
circuit boards. The design uses aircraft 28 VDC power (0
produce +5 VDC and +15 VDC. Maximum rated current is
about 1.8 amps, resulting in a maximum power
consumption of about 50.2 watts. To provide over-
temperature protection, the power supply is designed to shut
itself off if the EOU internal temperature exceeds 225° F.
The power usage breakdown is as follows:

23



User Volts Amps
Litton +5 4.110
+15 0.286
-15 0.427
GE +28 0.240
+15 0.020
-15 0.020
Conax +5 1.500
+15 0.025
-15 0.010
Ametek +15 0.040

Power Supply Inefficiency Effect (41.15/0.82)

5.2.2 Comparison Sensor Signal Conditioning

GE modules designated A2, A3, and A4 contain signal
conditioning for four electrical comparison sensars:
FVG/CVG position, T2.5 temperature, and AB flame

Measurement Input Signal

FVG Position +6.075 10 -6.75 VDC
CVG Position 0.15310 1.376 VDC
T2.5 Temperature -2.028 t0 11.472 mVDC
AB Flame Detector 0VDC/50VDC
Intermal EOU Temp. 392.5 to 740.1 ohms
Internal EOU Temp. 392.5 to 740.1 ohms

5.3 CONAX T5 SIGNAL PROCESSOR

This is a dual board assembly measuring 0.7 X 2.0 X
4.0 inches (see Figure 19), incorporating a special optical
connector to mate with the connector at the end of the 4-
probed harness. The processor includes a thermoelectric
cooler required to stabilize the germanium detector at
temperatures about 50° C.

The output signal consists of a 12 bit binary code,
representing TS temperatures from 700 to 2500° F, which is
sent to the Litton DAC board. Two status bits are also
provided. One bit indicates the operational status of the
signal processor and reflects Built-In-Test routines
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Power (Watts)

20.55
4.29
041
31.25 (total Litton)
0.67
0.30
030
1.27 (total GE)

7.50
0.38
Q135
8.03 (total Conax)

0.60

41.15 subtotal Watts
50.18 total Watts

(total Ametek)

detector, as well as for the two RTD temperature sensors
that monitor internal EOU temperature. The design consists
of 5 printed circuit boards. Each measurement is sent to the
Liton electrical receiver board in the form of a 0 to 1.25
VDC analog signal, scaled as follows:

Source Range/Units

engine ECU 0 t0 2.7 inches stroke
CVG potentiometer -3.510 52.5 degrees
T2.5 T/C probe -65° to 540° F
engine ECU light / no lLight

RTD on CCD board -55°10 125°C

RTD in GE module -55°10 125°C

evaluating RAM, ROM, and input/output operations
throughout the normal program execution. The second bit
indicates optical signal path condition which can be
checked when the system is operating in ratio mode. The
asynchronous paralle! electrical interface allows the
temperature value to be read whenever required.

Conax fabricated three signal processor assemblies for
this program. At this stage in the technology development,
to provide accuracy comparable with the F404 electrical T5
thermocouple harness, the signal processors are matched
with a particular 4-probed hamess assembly. One of the
three processors was subjected to and passed the following
environmental testing to demonstrate its ability to perform



zg-32 Standoffs

Chassis Mounting Block

inside the engine-mounted EOU.

» 25 thermal cycles, -65° to 195° F.

« 24 hour thermal soak, 195° F.

- Vibration, 10 to 2000 Hz, 10 g’s, resonance
dwells/endurance sweeps.

5.4 AMETEK AB FLAME DETECTOR ASSEMBLY

This is a printed circuit board assembly measuring
about 1.1 X 4.7 X 4.3 inches (see Figure 16), incorporating
a special optical connector to mate with the connector at the
end of the fiber bundle cable. The UV detector tube
produces a train of pulses when the flame is detected. The

Figure 19 - Conax T5 Signal Processor

pulses are converted to 1 to 5 V square waves, 10
milliseconds wide, at 20 Hz, which is sent to the Litton
DAC board.

Ametek fabricated three detector assemblies for this
program. One of the three assemblies was subjected to and
passed the following environmental testing, to demonstrate
its ability perform inside the engine-mounted EOU.

« 25 thermal cycles, -65° to 230° F.

« 24 hour thermal soak, 230° F.

- Vibration, 10 to 2000 Hz, 10 g’s, resonance
dwells/endurance sweeps.

» Humidity, 5 days, 95%, 70° to 167° F
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6.0 EOU DESIGN, ASSEMBLY, & TESTING

The EOU is designed to be an engine-mounted
housing for the electro-optics and electronics circuitry used
for signal conditioning the fiber optic sensors and some
electrical comparison sensors tested in this program.

6.1 CHASSIS DESIGN

The EQOU chassis is a riveted and dip-brazed
aluminum structure with design features similar to the
present production ECU chassis, and fabricated by a
production chassis supplier. The most common material is
0.063 inch thick aluminum sheet per AMS 4026 or 4027,
with chemical treatment (alodine) for corrosion protection.
The structure uses U-shaped channels and solid block
reinforcement to provide wall and comer rigidity.

The side and aft (not forward because of concern for
contamination) panels contain cut-outs for the eleven
interface connectors. The four chassis mounting brackets
are brazed integral with the chassis framework. The
assembly with covers is non-hermetic to allow for moisture
drainage. Threaded holes for cover attachment screws and
other installations use self-locking inserts or self-locking
nuts.

The chassis’ volume and external L shape (3 X 9 X 15
inch) were chosen to both house the needed circuit
boards/modules and to facilitate its mounting on the F404-
400 engine, with sufficient clearance for installation in the
aft-looking-forward, left engine of the NASA F18 aircraft.
A location on the installed engine could not be found to
mount a simple rectangular-shaped chassis of sufficient
size.

6.2 ASSEMBLY PROCESS
6.2.1 Assembly Stages

At GE Evendale, the two modules associated with the
EOU power supply and the three modules associated with
the signal conditioning of four electrical comparison sensors
and the two internal EOU temperature sensors, were
mounted into the chassis and tested as a subassembly. The
Ametek detector assembly for the AB flame sensor and the
Conax signal processor board for the TS probe/cable
assembly were also installed into the EOU and wired to the
power supply. In addition, the nine MIL-C-38999 chassis
interface connectors were mounted onto the side and aft
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panels and a set of grounding lugs were installed and wired
to the GE modules as applicable.

The partial assemblies were completed at Litton where
the eight SEM-E board assemblies and the backplane were
installed. A custom structural framework was used to hold
the boards and backplane together as a subassembly unit.
After installation they were wired to the power supply and
interface connectors. Routed optical fibers are held in place
using velcro.

6.2.2 Wiring

In each EOU, Litton fabricated and routed thirteen
100/140 micron fiber runs from their boards to a G&H
termini (board-side) and from a mating G&H termini
(backplane-side) to the appropriate MIL-C-38999 chassis
interface connector. Those four paths returning to the
optics receiver board contain optical attenuators for
adjusting optical power. Because the T1 temperature sensor
uses 200/240 micron fiber and G&H termini for that size
were not available, this fiber was routed straight from the
SEM-E board to the chassis connector.

A standard GE approach to module interconnection
electrical wiring was used, including soldering to J-pins,
trimming, and waterproofing. The majority of the wire is
size per #24 AWG. Size #20 AWG was used for higher
capacity power ground wires.

6.3 INTERNAL FEATURES

The five GE modules and the Ametek detector
assembly are mounted in one leg of the L shaped chassis.
The end surfaces of the GE module cans are mounted with
threaded fasteners flush with the inner surface of the chassis
fuel-cooling plate. The Ametek assembly slides between
two rails and is clamped in place with its connector flange
fastened to the chassis outer panel.

The other chassis leg contains the Litton SEM-E
board/backplane subassembly and the Conax signal
processor board. The Litton subassembly framework
mounts with threaded fasteners into the chassis structure.
The individual boards slide in through slots and are
removable, except for the TRD board, which has a fiber
pigtail directly to the MIL-C-38999 chassis connector
contact that must be released. The Conax board fastens to



the chassis wall through standoff posts and its connector
flange is supported by a chassis outer panel. Figure 20 is an
internal schematic of the EOU assembly. Figures 21 and 22
show some of the internal/external features. Also refer to
Appendix B, Figures 58 and 59.

6.4 INPUT/OUTPUT INTERFACES

These are described in Table 1. The nine chassis-
mounted MIL-C-38999 interface connectors are electroless
nickel-plated aluminum, square-flange, wall-mount
receptacles with size 20 contacts for the electrical
conductors, size 16 contacts for the fiber optic conductors
The fiber optic contacts are Amphenol pins per MIL-T-
295044,

6.5 THERMAL STUDIES

The F404-400 ECU is designed to function under the
following environmental thermal conditions. The EQU is
mounted slightly aft of the ECU, so that the mounting
surface temperatures are expected to be slightly higher. An
additional factor is the internal electrical power heat
dissipation, which for the EOU is a maximum of about 50
watts.

Measures taken to monitor and control the potential
EQU temperature problems in this program include:

1. The internal EOU temperature is measured in two
places and the signals are transmitted on the 1553
data bus for monitoring.

2. The EOU power is designed to shut off when the
internal temperature reaches 107° C, to provide
some over- temperature protection.

3. NASA Dryden supplied some heat shield material
to reduce radiated energy from the engine surface,
during flight testing.

4. The EOU chassis is designed with the capability of
using fuel flow (in series with the ECU) to cool the
internal circuitry. Approximately 61 inches of
aluminum tubing (0.25 inch OD, 0.18 inch ID) is
brazed to the engine-side of the chassis walls .

6.6 TESTING (ref.9)

Three EOU’s were assembled for this program. EOU
#1 is designated the unit for full environmental testing.
EOU #2 is designated the prime unit for engine testing.
EQU #3 is designated the backup unit for engine testing.
The following testing was performed at Litton Poly-

Normal Extreme
Ambient Temperature: -34°Cro121°C to 149° C for 7 minutes
Mounting Surface Temperature: -34° C10204°C to 260° C for 7 minutes
Cooling Fuel Temperature: -54°C1095°C to 107° C for 2 minutes

The extreme ambient and mounting surface temperatures
are not expected to be a problem because of the EOU’s
large thermal time constant. However, if fuel is used to
cool the EOU, the fuel, at its extreme temperature, could
actually increase the EOU temperature very quickly.

High temperature capabilities of EOU circuitry
include: power supply circuitry, 125° C; flame detector
circuitry, 110° C; and T5 sensor signal processor, 90° C.
As the temperature of the Litton SEM-E board set is
increased from 75° C to 90° C the WDM CCD array
detector dark current also increases. In this temperature
range, because of decreasing signal-to-noise ratio, the
signals of the four sensors (FVG, CVG, and VEN position
sensors and the T2.5 temperature sensor) using this
detection technique increasingly fluctuate until the signal
cannot be decoded. As the capabilities of the EQU circuitry
is exceeded, more and more data will not be valid, but the
circuitry will recover when the temperature decreases.

Scientific. Note that for bench testing, the NH speed sensor
and TS temperature sensor inputs to the EOU must be
simulated because these sensors require engine operation in
order to function.

6.6.1 Acceptance Testing of EOU #2 & #3

« Interfacing Checkout - Single point verification of
correct MIL-C-1553 output with sensors/cables
connected.

» Performance At Room Temperature - With sensors
disconnected, optical output power measurement
from each source port. With sensors connected, the
optical output measurement from each electro-optic
circuit using 10 data points from each sensor.

« Max/Min Temperatre Testing - Repeat of room

temperature performance testing at -55° C and 75°C.
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6.6.2 Environmental/System Testing of EOU #1

+ 25 thermal cycles, -55° C 0 75° C

* 24 hour soak at 70° C

+ Vibration, 10 to 500 Hz, 3 planes, resonance
dwells/endurance sweeps per F404 levels

« Physical shock, 3 planes, 20 g’s, 11 milliseconds

» Electromagnetic Compatibility (EMC) -
conducted/radiated emissions

+ Verification of performance with EOU and sensors
in separate temperature chambers

* Thermal Testing

" Thermal testing revealed information about the
accuracy of the position sensor measurements. FVG
position sensor measurements were virtually unaffected by
the temperature of either the EOU or the sensor. However,
the CYG/VEN sensors measurements were significantly
affected. Factors in this included: a variation in the light
bandwidth profile, especially at the cold end of the
temperature range (even though a reference source signal is
divided out); increasing detector dark current at the hot end
of the temperature range; and variations in sensor insertion
loss and dynamic range. The latter two factors make it
difficult to budget the sensor system’s optical modulations
within the detector’s operational range.

* Vibration and Physical Shock Testing

For the vibration and physical shock testing, a
relatively complex fixture was fabricated allowing the EQU
to mount on the vibration table in a manner which simulates
its mounting on the engine. The testing was conducted at
the Aerospace Testing Corporation, Roanoke, VA. During
the testing the output was monitored and the cooling wbes

were pressurized with water. In the engine axial and
circumferential planes, the only resonances were 46 Hz and
41 Hz respectfully, which are below the one/rev engine
excitation range (66 to 280 Hz). In the engine radial plane,
resonances at 72 Hz and 118 Hz were found. At each of
these, the EOU was subjected to about 4 hours of dwell
vibration at representative engine input levels. In addition,
a two hour sweep from 10 to 300 to 10 Hz was performed.

The vibration test identified no apparent mechanical
problems. The internal attenuator settings were unchanged.
The mounting brackets were visually monitored to be
without significant response. However, during the dwell
testing at 72 Hz, the EOU output display indicated a fault
flag. No obvious external cause, like a loose connector, was
determined. During the subsequent sweep testing, the
output returned to normal. After internal examination, the
cause is still unknown.

» EMC Testing

Radiated/conducted emissions testing per MIL-STD-
461/462 was conducted at Cincinnati Electronics,
Cincinnati, Ohio. Conducted emissions, test CE102,
determines how well the aircraft equipment is protected
from conducted noise exiting the EQU power circuits. The
results were slightly over limits but considered passed.
Radiated emissions, test RE102, determines if the aircraft
equipment is sufficiently protected from radiated noise from
the EOU system. The system did not pass this test. Litton
suspects the heavy emission is being generated by sharp-
edged clock driver circuitry in the processor. The aircraft
was to be checked out before flight by powering up the
existing equipment and then the FOCSI equipment.
Additional shielding and grounding of the EQU cables,
especially power, could be applied.



7.0 CABLE DESIGN & FABRICATION

7.1 IDENTIFICATION OF CABLE SET

The cable set for this program consists of fiber optic,
electrical, and combined fiber optic/electrical cables
branching from the EOQU to sensor locations on/off the
engine, to the engine ECU, and to aircraft sources for
electrical power and data recording. These are shown in
system schematic, Figure 2, and listed below.

1. EOU-J81 to optical NL/NH sensors.

fluoropolymer tube. The tube in surrounded by a braided,
teflon-coated, fiberglass or kevlar strength member, covered
by the teflon FEP outer jacket. The cable is rated from -65
to 200° C.

7.3.2 Fiber Terminations

2. EOU-J82 to optical FVG sensor and optical/electrical CVG sensors.

3. EOU-J83 to four optical T5 sensor probes.
4. EOU-J84 to optical flame detector spacer.

5. EOU-J8S to engine interface bracket to optical T1 sensor mounted off engine
6. EOU-J86 to optical/electrical T2.5 sensor probe.

7. EOU-J87 to optical VEN sensor.
8. EOU-J88 to ECU-J61 connector.

9. EOU-J89 to engine interface bracket to off-engine MIL-C-1553 data recording.
10. EOU-J90 to engine interface bracket to off-engine 28 VDC power source.

11. NL sensor electrical jumper.

7.2 OPTICAL SENSOR LOOP FIBER
CONFIGURATIONS

Figures 23 through 26 describes the optical fiber
configurations and connector interfaces for seven of the
nine sensors. The other two sensors, AB flame and T3
temperature, use simple point to point, probe element to
detector, configurations. Note that for the six
configurations shown, two sensors use four fiber-to-fiber
connector interfaces, and four sensors use six fiber-to fiber
connector interfaces.

7.3 GE-DESIGNED FIBER OPTIC CABLES
7.3.1 Fiber Optic Cable

These consist of cable numbers 1, 2, 5, and 6 as listed
above, and described in Figures 23 through 26. The fiber
cable is from Brand-Rex, and four fiber types, as designated
by the sensor suppliers, were used. The NL/NH speed
sensors use 100/140 micron, graded index fiber with 0.29
NA. The FVG/CVG position sensors use 100/140 micron
step index fiber with 0.22 NA. The T1 sensor uses 200/220
micron step index fiber with 0.22 NA. The T2.5 sensor
uses 1007140 step index fiber with 0.29 NA. All fibers are
polyimide-coated and semi-loose within a thin-wall

The ends of the fiber cable are terminated with MIL-
T-29504/4 or 5 (pin/socket) contacts, rated 1-om -55 to 200°
C. The procedure includes burning off a section of the
polyimide, epoxying into the contact, and
cleaving/polishing the fiber/contact end face. The epoxy
used has a maximum rated service temperature of 200° C,
but its full max to min range is affected by the curing
procedure. The contacts are designed to install into the size
16 electrical contact cavity of a MIL-C-38999 Series III
electrical connector, using standard insertion tools.

7.3.3 Conduit Assemblies

The fiber cable is housed within flexibie, crush
resistant conduit, also providing bend radius control. The
thermally-stabilized inner PTFE conduit is available with
inside diameters ranging from 0.188 to 0.625 inches, chosen
to fit the number of conductors. This is wrapped with a
reinforcing wire for added crush/kink resistance. If
electrical wires are also present, as with the CVG and T2.5
comparison sensors, a nickel wire braid is applied and
crimped to the metallic end fittings to provide shielding.
The assembly is covered with a high temperature non-
metallic outer braid.

The cable/conduit assembly features end fittings
threaded to mate with the metric threads at the rear of the
MIL-C-38999 Series III connectors. For multiple branches,
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EOU BACKPLANE
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G&H Js1
=D~ EOU CHASSIS NL SENSOR FROM
LITTON - 717 -m-J=-=-%zfFd===:F404-400
ELECTRICAL
NL BOARD SENSOR
— | OPTICAL
NH SENSOR
pu

CABLE FROM EOU J81 TO
NHE{)%D G&H CONTACTS OPTICAL NUNH SENSORS

FEATURES:
S - Source * Amphenol FO Socket Contacts Per CF-198035-17
D - Detector * Brand-Rex Fiber Optic Cable Per OC-1260
C - Coupler * EPOTEK Epoxy Per 353ND

* MIL-C-38999/26F Connector Plugs

* ICORE Braided PTFE Conduit & Wye Transition

Figure 23 - Optical Fiber Configuration For NL/NH Sensors
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CONTACTS g5 OPTICAL FVG
CONNECTOR SENSOR
EOU CHASSIS L
LUTTON -©
SOURCE BOARD
OPTICAL CVG

CCD
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RECEIVER BOARD

G&H CONTACTS
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D - Detector
C - Coupler

A - Attenuator

CABLE FROM EQU J82 TO
OPTICAL FYG/CVG SENSORS

FEATURES:

SENSOR

=9

L

* Amphenol FO Socket Contacts Per CF-198035-17
" Brand-Rex Fiber Optic Cable Per OC-1388

* EPOTEK Epoxy Per 353ND

* MIL-C-38999/26F Connector Plugs
* ICORE Braided PTFE Conduit & Wye Transition

Figure 24 - Optical Fiber Configuration For FVG/CVG Sensors
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sections of conduit are assembled using wye or double wye
transition fittings.

7.4 SUPPLIER-DESIGNED FIBER OPTIC CABLES
7.4.1 VEN Pasition Sensor Pigtail

This is cable number 7 as listed in paragraph 7.1. The
two fibers (100/140 micron, step index with 0.22 NA) for
this sensor exist at 90 degrees with the sensor housing
through a conical ferrule and into conduit similar to that
used in the GE-designed cables. The pigtail is 90 inches
long and fibers are terminated with MIL-T-29504/5 socket
contacts and installed into a MIL-C-38999 Series III, shell
size 11 connector plug for interfacing with EOU-J87

7.4.2 AB Flame Detector Cable

This is cable number 4 as listed in paragraph 7.1. This
59 inch long cable consists of a quantity of approximately
100, 200/220 micron, aluminum-coated, step index fibers
with 0.22 NA. The overall cable spectral transmittance is
established by spectroradiometric measurements in the
wavelength range between 200 and 270nm. The fibers are
hermetically metal sealed at the spacer (hot) end. The
external sheath is a flexible stainless steel hose, 0.375
inches OD. Two fasteners are used to hold one end into one
of the three spacer ports on the AB duct. The other end has
a coupling nut for attachment to EOU-J84, actually a
threaded boss on the detector board assembly.

7.43 T5 Temperature Probe Harness
This is cable number 3 as listed in paragraph 7.1. Itis

described in paragraph 4.3.1 TS Temperature Sensor
Design and shown in Figure 10.

7.5 ELECTRICAL CABLES

These consist of cable numbers 8,9, 10 and 11 as
listed in paragraph 7.1. They were assembled at GE Ft.
Wayne, Indiana using the same design features and
fabrication techniques as used for F404 production
electrical cables, for example, double shielding, molded
rubber-booted connector backshells, and outer spiral-wrap
chafeguard.

« The EOU-J88 to ECU-J61 connector cable brings
the electrical AB flame and FVG position
comparison sensor signals from the ECU to the
EOU using three 20 gage electrical conductors. The
cable is 43 inches long.

The EQU-J89, MIL-C-1553 data cable sends the
EOU output data to the engine ground test or flight
test recording system. Its other end mounts to the
engine interface bracket for mating with an off-
engine cable. It uses two channels of M17/176-
00002 blue/white 24 gage wire, standard for MIL-C-
1553 transmission. The cable is 66 inches long.

+ The EOU-J90, 28 VDC power cable supplies EOU
power from the ground test power supply or the
aircraft for flight testing. Its other end mounts to
the engine interface bracket for mating with an off-
engine cable. It uses a single pair of 20 gage wires.
It is 66 inches long.

+ The NL sensor Y jumper cable provides electrical
energy from the F404 electrical NL sensor to the
fiber optic NL sensor, while maintaining an
electrical NL signal to the ECU, as shown in Figure
6. The branch for the F404 NL signal uses two 20
gage pairs; the branch to the optical NL sensor uses
one 20 gage pair. Overall the cable is 28 inches
long.
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8.0 INSTALLATION OF HARDWARE ON THE ENGINE

8.1 SENSOR INSTALLATIONS
8.1.1 T1 Temperature Sensor

This sensor mounts through a panel in the airframe’s
engine intake, about 5 inches in front of the engine. It is
mounted using a method similar to that used for an icing
sensor in an adjacent intake panel. The intake panel is
stiffened with doubling material and the sensor flange
mounting pad is supported by intake rib framework, not just
the panel material itself. No mounting fasteners protrude
into the engine airstream. See further discussion on this
installation in Section 9.0 GE Flight Readiness Review,
Chit #5.

8.1.2 T2.5 Temperature Sensor

This combined optical/electrical probe installs through
the mounting flange of the sensing end of the F404
pneumatic compressor inlet temperature (CIT) transmitter,
and is clamped in place using a Swagelok fitting, as shown
in Figure 4. Two CIT transmitters, GE Part Number
5033TS0P02 were modified for this program by drilling a
3/16 inch diameter hole through the flange into the probe
cage, and by welding a Swagelok threaded boss onto the
flange. The resulting modification is identified as GE Part
No. 5033TSOP02AA.

The existing F404 CIT transmitter was removed from
the engine’s compressor mid frame and main fuel control
and replaced with the modified transmitter. The T2.5 probe
was installed, the Swagelok nut was tightened, and its cable
routed to the EOU, supported using cushion loop clamps.

8.1.3 TS5 Temperature Sensor

This four-probed harness replaces the lower four-
probed thermocouple hamess on the engine AB case. Each
probe flange uses two fasteners. The tips of the the optical
probes are relatively fragile and must be inserted straight in.
Existing cable clips are used to support some of the four
branches, new cushion loop clamps for others. The four
individual fibers to one fiber bundle transition section is
well supported. The cable is routed to the EOU.

8.1.4 FVG Position Sensor
+ Installation

This sensor contains a split collar designed to clamp
around the sensor body and provide a flange for mounting
onto the FVG actuator servovalve block with two fasteners.
The sensor’s rod end fastens to the actuator piston using
two swivel linkages. These linkages are required to take up
any misalignment between the parallel stroking of the
sensor and the actuator. Figures 66 and 67 show the
installation.

* Rigging

The sensor was rigged with the actuator against its fully
retracted stop. In this position, the sensor and linkages were
mounted but fasteners not tightened. The gross rigging
adjustment was the position of the sensor body in its clamp.
Fasteners were tightened after checking for binding over the
full stroke. Fine adjustment was accomplished by rotating
the sensor’s rod end turnbuckle (+ 0.050 inches capability)
while reading the output signal from the EOU.

8.1.5 CVG Position Sensor
« Installation

The circular flange of this sensor mounts to a main
supportive bracket using two U-shaped clamps. The main
bracket in turn mounts with a slotted hole (for position
adjustment) at a single point on a horn of the F404 main
fuel pump assembly. A second smaller bracket adds
support to the main bracket. The sensor shaft is coupled to
the CVG actuation pivot stud using a flexible bellows and
two split bushing clamps. Figure 68 shows the installation.

 Rigging

This sensor is very difficult to rig due to the crowded
hardware in this area of the engine. With the CVG actuator
fully retracted and the sensor and brackets mounted to the
engine, the split bushing clamp set screws can be loosened
to allow rotational adjustment, until the optical and
electrical comparison signal monitored at the EOU are the



proper values.

8.1.6 VEN Position Sensor
« Installation

The engine AB case was modified by adding a hole
through its aft cone to allow the VEN position sensor rod to
extend through and fasten to a clevis bracket clamped
around the AB ring. The additional hole is the same size as
those through which the three VEN actuators and the
electrical LVDT VEN position transmitter extend. The hole
is located circumferentially at about 3:00 o’clock, aft
looking forward.

The sensor body is supported in two locations. An
additional set of brackets fasten to a circumferential rib on
the VEN case and also support a set of blocks which clamp
around the sensor body near its forward end. A cushion
loop clamp fastened to a casing stud supports the sensor
body near its aft end. This latter support is not a rigid
clamp, but allows the sensor body to slip slightly under the
axial thermal growth of the hotter casing. The cable pigtail
is routed to the EQU. Figure 69 shows the installation.

+ Rigging

With the VEN actuators in the fully retracted position,
the sensor rod end was fastened to the AB ring bracket
clevis, and the sensor body position adjusted axially until
the EOU displays an approximately zero reading. The
sensor body clamps were then tightened and the actuators
extended to record sensor output at the fully extended end.
Care must be taken to avoid exerting pressure on the
sensor’s relatively weak mechanical end stroke stops.

8.1.7 NL Speed Sensor

As shown in Figure 14, this sensor has a connectorized
electrical cable pigtail and a connectorized optical cable
pigtail. The electrical cable pigtail mates with one branch
of the Y jumper cable (see Figure 6) receiving a signal from
one of the two F404 NL speed sensors. The optical cable
pigtail mates with the NL branch of the fiber optic cable
interfacing with the EOU J81 connector, as shown in Figure
23. The sensor body is small and light enough to be
supported with a loop clamp as part of the cable routing.

8.1.8 NH Speed Sensor

Installation of this sensor onto and through a modified
alternator stator is described in the sensor design paragraph
4.8.1. Figure 27 is a layout of the F404-400 alternator
stator showing the NH sensor installed. Figure 65 is a
photograph of the modified stator.

8.1.9 AB Flame Detector

The F404-400 electrical flame detector and cable
branch were removed in order to mount the fiber optic
flame detector spacer onto the AB duct. The F404 flame
detector was reinstalled onto the spacer using three
fasteners into the spacer’s self-locking inserts. This is
described in Figure 7 and the photograph in Figure 70.

An analytical study was done to establish the increase
in mounting bolt stress and the vibrational effect of adding
the additional mass of the spacer, and moving the effective
center of mass outward. The bolt stress showed a small (=
5%) increase compared with the initial prestress associated
with assembly tightening. The shift in the assemby’s first
natural frequency was predicted to be about a 20% lower
value, not thought to be significant. Actual data at Ametek
showed the first resonance to be above 2000 Hz.

8.2 CABLE ROUTING/INSTALLATION

Figures 28, 29, and 30 show a rollout of the engine
with the routing of the additional cables listed in paragraph
7.1. The lengths were sized using a F404-400 mockup
engine at GE Lynn. The philosophy in routing was to
follow established cable paths as much as possible.
Standard cushion loop clamps of various sizes were used to
fasten the cables to existing brackets and other cables.

8.3 EOUINSTALLATION

The EOU assembly contains vibration isolation at
each of the four chassis mounting brackets per standard
F404 design. This consists of inner and outer elastomeric
isolators sandwiched between inner and outer metallic
ferrules which impose a fixed squeeze and allow the chassis
to float in the isolators.

The EOU chassis mounts to the engine using a ten
piece bracket assembly, interfacing with the engine at eight
casing studs. The installation straddles the interface
between the outer bypass duct and the AB casing, with four
interfaces on each casing. The brackets are designed to
reach through existing components, positioning the EOU as
close to the engine as possible without interference.
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Installation sketches are shown in Figure 31.
looking-forward photograph is shown in Figure 71.

The EOU chassis is designed to accept fuel cooling
flow in series with and downstream from the ECU. The
configurational modification is relatively simple. The
flexible hose from the ECU return port to the rigid MFP
return line was replaced with flexible hoses to and from the
EOU, as shown in Figure 32. The additional flexible hoses
were procured from the same supplier using the same
design as other F404 flexible hoses.

8.4 F-18/ENGINE INTERFACE ISSUES
8.4.1 Physical Clearances

There was initial concern for two areas where
potential interferences could occur between the hardware
added to the engine and the surrounding structure in the
aircraft. During flight maneuvers, the engine is restrained
from moving by its mounts, but the aft end has some
freedom to wag horizontally. The original installation
design intent was to have a minimum of 0.75 inches
clearance at any point around the engine
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Figure 27 - F404-400 Alternator Layout Showing
Installation of Fiber Optic NH Sensor

The fiber optic flame detector spacer, initially 0.75
inches high, left about 0.25 inches clearance between the
electrical flame detector and an airframe structural rib.
After flight testing measurements were taken, it was
concluded that a 0.5 inch spacer would be acceptable. A
new spacer was fabricated.

Early installation measurements around the EQU
chassis initially showed about a 1 inch clearance. Using a
completed EOU assembly and the finalized set of mounting
brackets, accurate measurements were taken, showing less
than 0.5 inches in one area. Flight test measurements
confirmed this would not be a problem.

8.4.2 Cable Interfaces

The F404-400 engine includes a bracket mounted just
forward of the ECU where the flanged connectors at the end
of cables with signals being sent off engine are mounted.
At this location, an additional bracket is mounted 1o the
support the four additional cables interfacing with the
airframe for FOCSI. These are for the 28VDC EOU aircraft
supplied power, the MIL-C-1553 EOU output, the fiber
optic T1 sensor signal, and McAir fiber optic PLC sensor

signal.
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9.0 GE FLIGHT READINESS REVIEW

9.1 REVIEW PURPOSE

This Flight Readiness Review (FRR) was held on June
6, 1993 at GE Aircraft Engines. The overall purpose of the
review was to ensure the safety of operation of the
installation. More specifically, the objectives were
primarily, to identify any system, gas turbine, or installed
equipment problems that require correction or special
operating instructions prior to initial checkout, and
secondly, to make recommendations for design, program, or
procedures improvements that could contribute to the
success of the program.

9.2 GENERATED CHITS & RESPONSES

Fourteen (14) chits were generated.and prepared
according to GE policies covering the FRR process. Three
of the fourteen were judged to be Critical: #1, #5, and #6.
Resolution and downgrading of the Critical chits was 1o be
completed prior to the first flight. All chits were reviewed
at the NASA FRR on 5/10/94.

1. ECU Fault Testing With EOU Assembly

The EOU is electrically connected to the engine ECU
by the cable through which electrical FVG sensor and
electrical flame detection comparison signals are
transmitied to the EOU. The ECU system response to
shorts within the ECU/EOU cable and to on/off powering of
the EOU were performed at GE Ft. Wayne, IN on 4/26/94.
The results showed that normal or failed operation of
FOCSI hardware cannot affect normal operation of the
engine control system.

2. Fiber Optic NL Sensor - Potential Failure Modes

The fiber optic fan speed sensor is electrically
energized by tapping off of the output from one of the two
existing fan speed sensors. Failure modes of the fiber optic
sensor could corrupt and invalidate the electrical speed
signal sent to the ECU. However, if the ECU senses any
difference between the two fan speed sensor inputs, engine
fuel flow is reduced to part power. No engine damage or
personal injury will result.

3. Aeromechanical Integrity of the Fiber Optic
T2.5 Sensor

46

The fiber optic T2.5 sensor probe mounts into the base
of the existing F404 hydromechanical sensor, just behind
the larger pneumatic sensing bulb. There was concern that
it could be excited by vortices shed from the upstream
sensing bulb. After analysis it was concluded that the
probe’s major resonance is safely above maximum onefrev
engine speed and estimated vortex shedding frequency, and
below the minimum blade passing frequency.

4. Frequency Response of New Engine Brackets

Fatigue failure of a bracket can occur due to its having
a resonance in the engine operating range. Frequency
response (ping) testing was needed to determine potential
problems. Brackets can be modified to detune them and
instrumented during engine testing. Ping testing was
performed on 11/20/94 when all components were
assembled on the engine, at 23 bracket and component
locations. There were several responses in the engine
operating range, all with considerable damping. Those of
concern were instrumented during the second engine ground
test on 4/18/94 and levels were low or very low.

5. Integrity of T1 Sensor Mounting

The fiber optic T1 sensor is mounted on the aircraft
inlet duct, forward of the engine front flange. This is a new
and untried location and sensor mounting configuration.
The sensor housing itself is of a production inlet design.
However, the frequency response and stresses in the inlet
duct are unknown. NASA’s mounting design includes
substantial additional support and reinforcement. However,
GE conducted a design review and suggested instrumenting
the panel stresses/frequencies during aircraft ground/flight
testing,

6. Potential Damage To MFP Due To Fiber Optic
CVG Position Sensor

A bracket supporting the fiber optic CVG position
sensor mounted with a single bolt at the end of the MFP
inlet horn. Vibration testing by the sensor supplier showed
that this configuration did not provide proper support.
Damage to the MFP could cause a fuel leak.

The configuration was redesigned and solidified by
installing an additional bracket. The redesigned sensor
support system was reviewed and approved by GE Lynn



Configurations Engineering. Ping testing of the system
revealed a highly damped resonance in the engine operating
range. The second engine ground test included vibe
monitoring at this location.

7. Capping of Unused T5 Harness Connection At
ECU

The ECU connector interfacing with the lower T5
thermocouple harness is no longer used (the lower harness
is replaced by the fiber optic harness). A proper cap was
installed to prevent any kind of false signal from occurring.
In addition, it was confirmed that the ECU will average
only the four remaining thermocouple inputs in computing
TS5 temperature; the open signals are not used.

8. Effect of TS Harness Malfunction & Required
Pilot Action

The remaining TS thermocouple harness provides four
signal inputs to the ECU. An open failure in a single probe
is not noticed because only the good signals are averaged.
A short failure in a single probe causes an erroneously low
temperature signal, resulting in an increase in fuel flow.
The pilot would probably feel an aircraft yaw and return to
base. The possibility of simultaneous probe failures is
remote.

9. Adequacy of Clearance Between AB Flame
Detector & Aircraft Structure

The addition of a spacer for the fiber optic flame
detector moved the standard detector radially outward 0.75
inches, leaving only 0.25 inches clearance. Because of
engine movement during flight, interference is possible.
Measurements during a flight test at NASA Dryden showed
that a 0.5 inch spacer would be adequate and a new spacer
was fabricated.

10. Clearance of Fiber Optic FVG Position Sensor
With Airframe

This sensor is mounted directly to the F404 IGV
servoactuator. Its location above and outboard of the
actuator raised the question of adequate clearance with the
airframe structure. Subsequently, measurements were taken
on the engine at GE Edwards and an F18 installation at
NASA Dryden, showing at least 1 inch clearance. If

interference occurs during engine installation, the sensor
could be removed and mounted after the engine is installed.

11. Mounting of Fiber Optic VEN Position Sensor

The mounting system for this sensor was unacceptable
at the time of the review. The mounting needed major
improvement and the frequency response of the final system
needed to be found and analyzed. Subsequently, the
mounting system was redesigned. A sensor body clamp
was provided using a bracket supported by a rib on the AB
case. Ping testing revealed some somewhat damped
resonances in the engine operating range. The sensor was
vibe instrumented during the second engine ground test.
Results showed levels were relatively low.

12. Fuel Cooling System For EOU

The EQU is cooled by fuel discharged from the ECU.
Concern is for the resulting fuel temperature increase and
for if the resulting reduced flow is sufficient to cool the
ECU under the worst flight test conditions. An analysis
showed that the series addition of the EOU represents less
than a 1° F increase in the ECU temperature, which should
be totally acceptable.

13. Installation of the EOU

The EQU brackets mount at eight F404 stud locations.
A concem is for the structural integrity of the bypass duct
and AB case when the EOU is mounted on the engine. The
EOU weight (25 pounds) and c.g. were measured. The
appropriate GE Lynn designers were identified and
provided with a detailed description of the EOU mountng.
Both reviewers judged there should be no integrity problem
and that a formal analysis was not required.

14. Fiber Optic NH Sensor Mounting Bolt Security

The bolts securing this sensor to the alternator stator
pass through the stator body from the inside, and into self-
locking inserts in the sensor housing. The bolt heads are
inside the stator and not inspectable once the stator is
assembled to the engine gearbox. If the bolts back out,
interference with the alternator rotor would occur and the
alternator would be damaged. The sensor must be inspected
at reasonable flight intervals. NASA Dryden has scheduled
10 do this inspection.
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10.0 ENGINE GROUND TESTING

10.1 FIRST ENGINE GROUND TEST
10.1.1 Purpose

The hardware designed, fabricated, and
environmentally tested was ground tested at GE Flight Test
Operation, Edwards, CA prior to installing the engine into
the aircraft for flight testing. The first test was November
8-10, 1993. The purposes of the test included successful
demonstration of the following:

« Installation and rigging of the hardware on the
engine.

» Recording of fiber optic and comparison sensor
signal data.

+ Continued normal operation of the engine control
system.

» Some verification of hardware flight worthiness.

10.1.2 Setup & Testing

The F404-400 engine supplied by NASA for both
ground and flight testing was modified for installation of the
FOCSI hardware as described in Section 8.0, Installation of
Hardware. All FOCSI hardware was mounted on the
engine in flight configuration except for the EOU and the
fiber optic T1 sensor. The T1 sensor, designed to mount in
the airframe engine intake, was strapped near the front of
the engine support framework. Unfortunately, the
supporting structure for the engine prevented mounting the
EOU directly on the engine. Instead it was placed on a
platform under the engine, just below where it would
normally mount, and all cables were able to reach. See
photographs of the engine in Figures 72 and 73.

This particular engine had been refurbished and
required the standard F404-GE-400 break-in test prior to
special test runs to gather data for FOCSI. During this time,
the FOCSI data was visually monitored in the control room.
Following the break-in test, additional transients and
steady-state operations were performed in order to record as
much of the sensor ranges as possible. Near the end of the
testing, the EOU fuel cooling hoses were installed for
several minutes.

10.1.3 Sensor Data
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Prior to engine testing, a PC was used by Litton to
look at the EOU output signals in a format displaying the
raw spectral data In this mode, the WDM sensor optical
attenuators in the EOU were adjusted for required circuit
light level. For data recording during the test, the EOU
output signals on the MIL-C-1553 data bus were converted
to analog format and recorded with the electrical sensor
comparison signals (T1, TS, NL, NH, and VEN) coming
from the engine ECU. Following are descriptions of the
EOU output data.

» Fiber Optic T1 Temperature Measurement

Initially the signal was very noisy/fluctuating. The
signal fluctuation amplitudes significantly reduced when the
spare cable was installed, but they were also noted to
increase at higher engine speeds (airflows/vibration levels).
It is suspected that connector back-reflections and/or
inadequate connector contact end face quality are a factor.
Subsequently, a lab experiment showed that slowly
unmating the connector causes the signal to increase in error
and standard deviation.

The fiber optic T1 sensor measurement was within 5
degrees C of the engine electrical sensor measurement at the
outdoor test cell ambient temperature levels. Based on
Litton calibration data, variation of this magnitude is
expected and may improve at other temperature levels.
Being at the engine inlet, testing over the sensor’s range
was not possible during ground testing. A dip in the
electrical sensor measurement with increasing airflow was
most probably due to lack of dynamic recovery. The optical
probe was not subjected to engine airflow.

» Fiber Optic T2.5 Temperature Measurement

Litton had difficulty processing this signal due to its
relatively small modulation over range. A slope
intersection software technique was chosen, resulting in
very poor resolution and a very fluctuating signal. In
addition a large offset was left in the signal calibration
causing the measurement to saturate at its 540° F limit
during an engine acceleration. Improvements in this signal
are described in Paragraph 10.2, Second Engine Ground
Test.

» Fiber Optic TS Temperature Measurement

During engine testing, a minimum 700° F value is
displayed due to the optical sensor’s lower range



limitations. Above 700° F, the fiber optic measurement and
the engine thermocouple signal tracked very closely with
very small if any offset on a steady-state basis. During fast
transients, some differences occurred, probably due to
differences in probe thermal time response.

« Fiber Optic FVG Position Measurement

The optical sensor signal was relatively clean and
stable and tracked with the engine FVG LVDT signal with
very little offset, within approximately 0.1 inches.

= Fiber Optic CVG Position Measurement

The optical sensor signal was relatively clean and
stable. The optical and electrical comparison signals (from
the same component) were offset about 10 rotational
degrees (a calibration bias), but tracked very well.

» Fiber Optic VEN Position Measurement

The optical sensor signal was a little noisy but the
optical sensor tracked with the engine VEN LVDT signal
reasonably well. There seemed to be a scaling error such
that optical sensor range was foreshortened, for unknown
reasons.

« Fiber Optic NL Speed Measurement

Due to a combination of apparent radiated and
conducted interference, the Litton EO circuit was not
expected to function with the sensor when physically
integrated into the EOU. The sensor has a larger insertion
loss and a much smaller modulation depth than Lition
anticipated. Litton attempted a number of fixes and
improvements without success. However, the sensor
performed satisfactorily with separate EO circuitry.

For the first engine ground test, the sensor was
installed on the engine and monitored separately. The
signal initially accurately tracked the engine electrical NL
speed sensor for part of the speed range, but then dropped
off to zero. The problem is not thought to be sensor related,
but a cause was not isolated. See Paragraph 10.2, Second
Engine Ground Test.

Fiber Optic NH Speed Measurement

The optical sensor signal tracked very accurately with

the engine NH speed measurement, but was very
noisy/fluctuating. Litton suspected the cause of the
fluctuations to be poor resolution in the signal’s digital
processing, such that a small amount of speed jitter results
in a large apparent speed signal jump.

Fiber Optic AB Flame Detector Measurement

The flame on/off signal from the fiber optic sensor
occurred virtually coincident with the engine electrical
signal. This demonstrated that the fiber optic cable
successfully transmitted enough energy to trigger the
detector, and that the electrical flame detector continued to
function normally at the ambient temperatures tested.

10.2 SECOND ENGINE GROUND TEST

The second engine test was designed to prepare the
final configuration for flight testing, including the following
list. The test took place in two phases. The first phase took
place April 5-8, 1994. Excessive engine vibration
prevented reaching over 86% speed, but data was recorded.
After replacing the engine fan module, the second phase
took place April 19, 1994. A sampling of the EOU output
signal data is shown in Figure 33.

« The original T2.5 sensor software algorithm was
replaced with a wavelength response ratio technique
to improve resolution, and the calibration offset was
minimized. The improvements were demonstrated.

« The NL sensor was monitored both through the EOU
(above ~ 65% speed) and over the full speed range
through separate signal processing supplied by
Banks Engineering.

« Sensors were mounted to measure vibration levels at
the FVG/CVG/VEN position sensors, identified as
locations of concern from the previous ping testing.
Monitored levels were low.

« A forced hot air method, without engine operation,
was used to confirm T1 sensor functionality over a
large portion of its range.

» Mounting and functional check of the McAir fiber
optic PLC rotary position sensor was performed.
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11.0 DISCUSSION OF RESULTS

In the process of designing, fabricating, and testing the
fiber optic sensing system components in this program,
lessons have been learned which are contributing to the
development of fiber optic technology for aircraft engine
application. This section reports many of those lessons
learned and other observations.

11.1 SENSING TECHNIQUES
1. Position Sensor Performance

In this program, two types of position sensing
techniques were demonstrated. Testing results showed that
to achieve good accuracy and unit-to-unit
interchangeability, the WDM analog ratiometric technique
(CVG/VEN sensors) requires close attention to minimizing
variations in the light source power and shape and in
matching variations in the optical circuit power budget with
the detector’s operational range. The WDM digital
technique (FVG sensor) is more tolerant to the above
variations. Lesson: Of the methods demonstrated, the
WDM digital position sensing technique probably has a
higher potential of achieving the performance required for
engine application.

2. T1 Sensor Measurement Fluctuations

With the time rate of decay sensor and electro-optic
circuitry used in this program, the sensor signal had
significant noise/fluctuations and poor accuracy. Back-
reflections from one or more of the connector interfaces is a
suspected contributor 1o the noise. Also, connector losses
are known to contribuie to inaccuracy when using the signal
processing phase technique. This was evidenced by the
difference in fluctuation level when different cables were
used. An experiment showed that both temperature
measurement accuracy and the standard deviations worsen
as a connector is loosened. Lesson: Sensor measurement
performance can be related to connector contact quality and
cleanliness. And this is probably more the case when back-
reflections affect the signal.

3. Position Sensor Sliding Surfaces

Considerable effort was spent in design/test of the
linear position sensors (both FVG, digital wavelength
division multiplexed, and VEN, analog wavelength
ratiometric) with respect to contamination due to wear from
the sliding surfaces. This contamination produces errors in

the sensing measurement. Abbreviated production
endurance testing was performed for this program. This
should be an area of focus in future design reviews.

11.2 DESIGN
1. Sensor Interchangeability

Being able to replace a sensor or cable or EO circuit
on an engine with minimal effect on the performance of the
sensing measurement is a requirement for production
systems. [Equalizing the insertion losses and dynamic
ranges of a set of the same sensors merely through, for
example, meeting tight manufacturing tolerances, is very
challenging. A convenient method of trimming individual
light paths may be required. Continue to push all aspects of
the interchangeability issue. Design circuiry tolerance to
sensor/cable variations.

2. Electrical Shielding In Fiber Optic Cables

Sections of the engine fiber optic cables for FOCSI
also contained electrical conductors for comparison sensors
and an anti-icing heater element in the T1 sensor. In these
cases, it was required to add outer nickel braiding in the
conduit for shielding, thus significantly increasing the
weight and cost. Trade off weight/cost of combining or
separating optical and electrical conductors for future

programs.
3. Clearance For Engine Installation

Mounting of FOCSI hardware on the engine initially
considered only the static position of the engine in the
aircraft. In two cases, the optical flame detector spacer and
the EOU assembly, clearance for the engine with these parts
installed was doubtful, because of the movement of the
engine during flight maneuvers. NASA measurements
during flight showed that the spacer needed to be modified,
but that clearance with the EOU was sufficient. Allow for
at least 0.75 inches around the F404-400 engine when
designing installation of additional hardware.

4. Signal Noise Caused By Poor Processing
Resolution

Both the NH sensor and the T2.5 sensor MIL-C-1553
recorded signals had considerable imposed noise. The NH
signal noise is suspected to be caused by poor resolution in
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its digital signal processing. Thus a small amount of noise
or jitter in the sensing process causes an apparent (not real)
large speed signal jump. A new NH board design could fix
the problem. The initial T2.5 sensor signal was very noisy
because of very high gain software algorithm.
Subsequently an improved algorithm was suggested by the
sensor supplier and implemented. For the cause of noisy
signals, consider signal processing deficiencies.

5. Conduit For Fiber Optic Cable Packaging

The conduit used for FOCSI provided good radius
control, crush resistance, repairability, engine installability,
and was relatively easy to assemble. However, because of
the variety of branch sizes requested, with some branches
requiring nickel braid shielding, the cost was relatively
high. Consider cost reduction measures for future

programs.
6. WDM Sensor Signal Processing

The chosen CCD array for the WDM sensors could
have had many fewer rows and the rows could have been
more optimally placed to accommodate optical spectra
locations. The array size needed to be small enough to
attach directly to the optical glass block. Optical aberations
are a suspected major cause of the WDM analog sensor
calibration (accuracy) problems. Lesson: A custom CCD
with reduced size and complexity would be preferred over
the chosen commercial one. The WDM optical block
assembly needs to be redesigned to reduce aberrations.

113 FABRICATION
1. Connector Contact Epoxy

One factor in the choosing the appropriate epoxy type
and the appropriate epoxy curing procedure for use in
terminating fiber optic connector contacts is the expected
temperature environment. Cables made for lab testing
purposes may be fabricated for the lower temperature
requirements, but may later be mistakenly used to mate with
a component in a high temperature test. The resuit could be
fiber pistoning and damaging of an expensive component’s
connector contact. Be mindful of how cables are fabricated
and how they may eventally be used.

2. Fiber Cable Stabilization
The fiber cable used for this program consists
primarily of a semi-loose tube design. The fiber is enclosed

by a small inner fluoropolymer tube which is wrapped with
a strength member braiding and covered with an outer
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jacket. After high temperature (350° F) soak testing of a
T2.5 sensing probe and connectorized fiber optic pigtail,
using one model of this fiber cable style, it was discovered
that the inner wbe irreversibly shrinks up to0 2.5% in length
and becomes somewhat sticky. This resulted in fiber
stresses causing fiber microbend losses and changes in the
transmitted mode distribution in the Fabry Perot sensing
technique, and a considerable calibration shift. Lesson: A
fix is to pre-bake and then straighten and gently shake the
cable until the fiber is loose within the tube.

3. Connector Contact Termination

The procedure for terminating size 16 fiber optic
contacts for MIL-C-38999 connectors includes sizing the
fiber length, removing the polyimide cladding, applying
epoxy, assembling fiber and contact, curing the epoxy,
scoring and breaking the fiber, and polishing. The fiber is
very easy to break by mistake once the polyimide cladding
has been removed. The correct polishing procedure is
critical in producing low loss performance. And frequent
climination of residue during the polishing procedure is a
key to good results. Lesson: Frequent cleaning of residue
during fiber polishing is an important key to successful
contact terminations.

4. Use of Epoxy In Component Assembly

Epoxies are typically used in fiber optic assemblies for
purposes of, for example, accurately aligning optical
pieceparts. Locking fasteners are more commonly used for
structural purposes in engine component packaging.
Lesson: Assembly techniques may need to be redesigned or
new techniques will need careful evaluation for long life
performance over the typical -55 to 200°C engine
environment.

11.4 COMPONENT TESTING

1. Technician Instruction About Fiber Optics

During sewp for the first engine ground test, a spare
fiber optic cable with only teflon jacketing protection was
used to replace the initial cable, packaged in conduit. The
test technician stowed the slack cable and unknowingly
folded it into a very tight bend radius, kinking the jacket.
This would have been appropriate for electrical wiring and
surprisingly it initially still functioned. However, after
repeated use, the weakened section resulted in a failure.
Lessop: Technicians must be made fully aware of the
limitations of fragile test cabling. Spare cables should be
available at the test site. Cable failures can be prevented by
using bend-radius limited and crush resistant packaging.



2. Sensor Accuracy Evaluations

The FOCSI program included some calibration and
environmental testing by the sensor suppliers and engine
test data is comparing electrical and optical sensor
measurements. However, a detailed accuracy analysis of
each sensor system (sensor, cable, and EO circuit) including
the effects such as temperature, hysteresis, repeatability,
and interchangeability left many unanswered questions.
More testing is required to more fully evaluate effects on
Sensor accuracy.

3. Power Supply Operation

During acceptance testing of the EOU at Litton,
considerable time was spent trouble-shooting erratic power
supply outputs. The EOU power supply was designed,
fabricated, tested, and assembled into the EOU chassis at
GE. The power supply outputs measured by Litton were
totally unreasonable. It was finally discovered that the
power supply grounding wire terminations, only observable
by removing the fiber optic flame detector module, were not
making good contact with the chassis grounding lugs to
which they should have been soldered. Good quality
control practices must be followed.

4. Screening Advanced Technology Components

Advanced technology custom 1X2 fiber opuc couplers
were procured for use in the optical CVG rotary position
sensors and in the optical T2.5 probe cables. Desirable
unique features included a very small package size and a
temperature rating of from -25° to 150° C. They were
fabricated on a best effort basis, and there were some
failures during component testing. To insure quality, a
shipment requirement should be 100% acceptance testing,
in this case, thermal cycling and perhaps tensile loading.
Lesson: Perform 100% acceptance testing on advanced
technology custom components.

11.5 SYSTEM INTEGRATION
1. Electro-Optic Interference

Some sensors signals require very high gain
amplification immediately following the optical detector
because of , for example, a very small optical modulation
depth. The detector output current can therefore be very
small and susceptible to radiated/conducted interference
from the surrounding circuitry, such that the amplifier
output is saturated, and the signal is lost. Lesson: Careful
integration between the sensor supplier and the electro-
optics designer is required early in the program.
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12.0 CONCLUSIONS

The subject of this report is to describe the work done
under NASA Contract NAS3-25805, that is, the
development of a fiber optic sensing system designed to
measure nine parameters on a F404-400 turbofan engine
during flight testing. The results are to be used to help
validate fiber optic technology towards eventual engine
product application.

As of completion of the engine ground testing, all nine
sensor signals are being monitored from the Electro-Optics
Unit to greater or lesser degrees of performance. Sensors,
cables, and signal conditioning circuitry all contribute to the
measurement. Following are general comments on
important issues associated with the present status of
development.

Many fiber optic sensing techniques are extremely
accurate on a single sensor basis. However, sensor
manufacturing repeatability must be improved such that
characteristics which affect accuracy are sufficiently
uniform. Sensor-to-sensor accuracy differences must fall
within an allowable tolerance. For production, it must be
possible to replace a sensing unit without adjusting any
other part of the measurement system, and achieve
acceptable performance results. The sensing unit and the
signal conditioning circuit must not have to be maintained
as a matched set. This especially applies to position and
temperature sensors where the signal conditioning employs
software calibration. Sensor suppliers have been made
aware of this issue.

Some fiber optic sensing components do not meet
performance requirements over the specified temperature
range, and others that do, have uncomfortably little margin.
Electro-optic components must be capable of adequate

performance rating over the full MIL-Spec range of -55 to
125° C. Epoxies are typically used in fiber optic assemblies
for purposes of, for example, accurately aligning optical
pieceparts. Locking fasteners are more commonly used for
structural purposes in engine component packaging. New
techniques will need careful evaluation for long life
performance over the typical -55 to 200°C environment.
Calibration shifts over the temperature range must fall
within an acceptable band.

Fragility and contamination are real world, practical
issues. Once the fiber is enclosed inside a temperature-
stable, crush-resistant, bend radius-controlled conduit,
survivability in the engine assembly environment is high.
Cleanliness in preparing and handling the present fiber optic
interface designs cannot be over emphasized.
Contamination generated from position sensor sliding
surfaces and the effects of fuel/oil needs more evaluation.

Fiber optic technology is recognized for providing
electromagnetic interference immunity with respect to the
interconnections between sensor and circuitry assemblies,
However, within the electrical control unit, some electro-
optic circuitry may be significantly sensitive to typical
radiated and conducted interference. The solution may
require new design and testing considerations for successful
integration.

This program has generated significant progress in the
development, demonstration, and experience base of
applying fiber optic technology to aircraft engine control
systems. Some measurement methods have displayed a
high level of performance and maturity, others require
considerable improvement. Flight testing will help clarify
strengths/weaknesses in a real service environment. The
follow-on program, using a set of fiber optic sensors and
electro-optic circuitry in closed-loop engine control, will
force continued and substantial quality improvements.



APPENDIX-A

SUPPLIER SELECTION

1. SENSOR SUPPLIER SOLICITATION

For the nine sensors to be demonstrated, solicitation
packages were sent to 23 potential suppliers. Each package
contained a statement of work, performance/environmental
requirements, form factor sketches, a representative test
plan, a program schedule, and a request for specific
technical information including interface characteristics.

Proposal responses were required to contain a
technical section describing the proposed approach,
available resources, response to the statement of work, and
past experience, and a cost section describing a detailed cost
breakdown, expenditure schedule, and cost sharing
commitment.

Weighted criteria were used to evaluate and rank the
responses technically. The criteria included: ability to meet
the design requirements, method of accomplishment,
present developmental level, special features and attributes,
related experience, and available resources.

The following 18 suppliers provided proposals for one
or more of the 9 sensors:

Allied Signal
Ametek Aerospace
Armtec Industries
Aurora Optics
Babcock & Wilcox

Banks Engineering & Labs
BEI Motion Systems
Computer Optical
Conax Buffalo

Kearfott

Litton Poly-Scientific
Luxtron Corporation
MetriCor

Norwich Aero. Products
Optical Technologies
Rosemount Aerospace
Simmonds Precision
Teledyne Ryan

2. EOA DESIGNER/INTEGRATOR SUPPLIERS

For the design, fabrication, testing, of board-mounted,
integrated electro-optic circuitry associated with the set of
sensors to be demonstrated, solicitation packaged were sent
to 7 potential suppliers. Emphasis was on providing design
commonality and multiplexing. Package content, proposal
response requirements, and evaluation criteria were very
similar to those for the sensors as described above. The
following S suppliers provided proposals for this work:

Allied Signal
Ametek Aerospace
GEC Avionics

Litton Poly-Scientific
Teledyne Ryan
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APPENDIX-B
HARDWARE PHOTOGRAPHS
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Figure 34 - Fiber Optic T1 Temperature Sensor

Figure 35 - Fiber Optic T5 Temperature Probe/Harness Assembly
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Figure 37 - Packaged T2.5 Temperature Probe Assembly
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Figure 38 - Fiber Optic FVG Position Sensor
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Figure 39 - Combined Fiber Optic/Potentiometer CVG Position Sensor
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Figure 40 - Fiber Optic VEN Position Sensor
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Figure 41 - Fiber Optic Flame Detector Spacer, Cable, and Detector Assembly
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Figure 42 - Fiber Optic NH Speed Sensor

Figure 43 - Fiber Optic NL Sensor and Cable Pigtails
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Figure 44- WDM Source Board

Figure 45 - WDM Optics Receiver Board
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Figure 46 - WDM Electrical Receiver Board

Figure 47 - Electro-Optics Board For Optical NL Sensor
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Figure 49 - Electro-Optics Board For TRD Sensor
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Figure 50 - Data Acquisition (DAC) Board

Figure 51- GE Power Supply and Electrical Sensor Signal Conditioning Modules




CONAX BUFFALC
ELECTRO-OPTIC MODULE FOR
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NASA CONTRACT NAS3-2580%

Figure 52 - Conax T5 Sensor Signal Processing Board Assembly
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G&H TECHNOLOGY, INC
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Figure 53 - G&H Expanded Beam Fiber Optic Terminus Assemblies For Routing Through Backplane
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Figure 54 - SEM-E Board Connectors With Fiber Optic Cavities For G&H Termini
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Figure 55 - Machined Inserts For Support of G&H Termini in Backplane
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Figure 57 - Side of EOU Chassis Showing Cavities For Module/Board Installation
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Figure 58 - RTD For Internal EOU Temperature Measurement
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Figure 61 - EOU-J88 To ECU-J61 Electrical Cable

Figure 62 - EOU-J89 Cable For Transmission of MIL-C-1553 Data
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Figure 64 - NL Sensor Y Jumper Cable
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Figure 66 - Modified F404 Alternator Stator For Installation of Fiber Optic NH Sensor




Figure 68 - Linkage Attaching Rod of Fiber Optic FVG Sensor To F404 FVG Acuator Piston

75




Figure 70 - Installation of VEN Fiber Optic Position Sensor On Engine AB Case
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Figure 72- Aft-Looking-Forward View of EOU Mounted On the F404 Engine
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APPENDIX-C

NL SPEED SENSING USING PRESSURE PULSES

1. THE SENSING TECHNIQUE

The F404-400 control system uses an electrical eddy
current sensor to measure NL rotor speed. This sensor
produces electrical pulses in response to the rotating
titanium fan blade tips The magneto-optic or Faraday
effect type sensor is not useful in this application because
titanium is a non-magnetic metal. One possible option was
a photoelastic optical pressure sensing technique proposed
by Aurora Optics, to sense and count the pressure pulses
from the tips of the blades. Aurora’s preferred
configuration used 200 micron fiber with input/output ports
physically 180° apart. The sensor was described by the
Supplier as having very good environmental capabilities.

2. ENGINE PRESSURE SIGNATURE TEST

To help validate the pressure sensing speed concept,
an experiment was conducted during a F404-400 engine run
at GE Lynn in May, 1991, to measure and record the
pressure fluctuations and levels at one of the two existing
electrical NL sensor mounting locations on the engine fan
frame. Kaulite pressure sensors were used. Peak to peak
pressure levels ranged from 1.6 to 12 psi over the speed
range. Fourier Transforms of the pressure data at five
engine operating points showed the one/blade frequency as
the major frequency in each case, with other acoustic

signals mixed with it.

3. SIGNAL PROCESSING

Using the pressure signals recorded during the engine
test, the present zero-crossing type signal processing for
speed signals would not result in an accurate speed
measurement. However, Aurora Optics attributed the
acoustic signals other than one/blade to resonances resulting
from the geometry of the sensor cavity configuration used
for the test. They were confident that the acoustic signals
were suppressible by locating the sensor diaphram close to
flush with the fan case inner wall.

4. RESULTS

At their preliminary funding level, Aurora could not
fabricate a prototype sensor designed to acoustically filter
out all but the one/blade pressure pulse. However, a
breadboard sensor was provided which was adaptable to
mount on the engine fan frame. About that same time the
Banks Engineering electro-optic modulator technique was
also being evaluated, and only one technique could be
pursued. There was not time to conduct another engine test.
With the information available, the decision was made to
use the electro-optic modulator.
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APPENDIX-D

ABBREVIATIONS
AB Afterbummer
CIT Compressor Inlet Temperature
CVG Compressor Variable Geometry
ECU Engine Control Unit
EOA Electro-Optic Architecture
EOU Electro-Optic Unit
FVG Fan Variable Geometry
LVDT Linear Variable Differential Transformer
MFC Main Fuel Control
MFP Main Fuel Pump
NA Numerical Aperture
NH High Pressure Rotor Speed
NL Low Pressure Rotor Speed
RTD Resistive Thermal Device
TRD Time Rate of Decay
Tl Engine Inlet Air Temperature
T2.5 Compressor Inlet Air Temperature
T5 Turbine Exhaust Gas Temperature
uv Ultraviolet
VEN Variable Exhaust Nozzle

WDM Wavelength Division Multiplexing
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